
Formal Methods in Computer-Aided Design 2022

Learning Deterministic Finite Automata
Decompositions from Examples and Demonstrations
Niklas Lauffer

∗
, Beyazit Yalcinkaya

∗
, Marcell Vazquez-Chanlatte , Ameesh Shah, and Sanjit A. Seshia

University of California, Berkeley, CA, USA
{nlauffer, beyazit, marcell.vc, ameesh, sseshia}@berkeley.edu

Abstract—The identification of a deterministic finite automaton
(DFA) from labeled examples is a well-studied problem in the
literature; however, prior work focuses on the identification of
monolithic DFAs. Although monolithic DFAs provide accurate
descriptions of systems’ behavior, they lack simplicity and inter-
pretability; moreover, they fail to capture sub-tasks realized by
the system and introduce inductive biases away from the inherent
decomposition of the overall task. In this paper, we present
an algorithm for learning conjunctions of DFAs from labeled
examples. Our approach extends an existing SAT-based method to
systematically enumerate Pareto-optimal candidate solutions. We
highlight the utility of our approach by integrating it with a state-
of-the-art algorithm for learning DFAs from demonstrations. Our
experiments show that the algorithm learns sub-tasks realized by
the labeled examples, and it is scalable in the domains of interest.

I. INTRODUCTION

Grammatical inference is a mature and well-studied field
with many application domains ranging from machine learning
to computational biology [1]. The identification of a mini-
mum size deterministic finite automaton (DFA) from labeled
examples is one of the most well-investigated problems in this
field. Furthermore, with the increase in computational power in
recent years, the problem can be solved efficiently by various
tools available in the literature (e.g., [2], [3]).

Existing work on DFA identification primarily focuses on
the monolithic case, i.e., learning a single DFA from examples.
Although such DFAs capture a language consistent with the
examples, they may lack simplicity and interpretability. Fur-
thermore, complex tasks often decompose into independent
sub-tasks. However, monolithic DFA identification fails to
capture the natural decomposition of the system behavior,
introducing an inductive bias away from the inherent de-
composition of the overall task. In this paper, we present an
algorithm for learning DFA decompositions from examples by
reducing the problem to graph coloring in SAT and a Pareto-
optimal solution search over candidate solutions. A DFA
decomposition is a set of DFAs such that the intersection of
their languages is the language of the system, which implicitly
defines a conjunction of simpler specifications realized by the
overall system.1We present an application of our algorithm to
a state-of-the-art method for learning task specifications from

∗
Equal contribution

This work was partially supported by NSF grants 1545126 (VeHICaL) and
1837132, by the DARPA contracts FA8750-18-C-0101 (Assured Autonomy)
and FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive, by Toyota under
the iCyPhy center, and by Toyota Research Institute.

unlabeled demonstrations [4] to showcase a domain of interest
for DFA decompositions.

Related Work. Existing work considers the problem of
minimal DFA identification from labeled examples [1]. It is
shown that the DFA identification problem with a given upper
bound on the number of states is an NP-complete problem [5].
Another work shows that this problem cannot be efficiently
approximated [6]. Fortunately, practical methods exist in the
literature. A common approach is to apply the evidence
driven state-merging algorithm [7], [8], [9], which is a greedy
algorithm that aims to find a good local optimum. Other works
for learning DFAs use evolutionary computation [10], [11],
later improved by multi-start random hill climbing [12].

A different approach to the monolithic DFA identification is
to leverage highly-optimized modern SAT solvers by encoding
the problem in SAT [13]. In follow up works, several symme-
try breaking predicates are proposed for the SAT encoding to
reduce the search space [3], [14], [15], [16]. However, to the
best of our knowledge, no work considers directly learning
DFA decompositions from examples and demonstrations.

This work also relates to the problem of decomposing a
known automaton. Ashar et al. [17] explore computing cas-
cade and general decomposition of finite state machines. The
Krohn–Rhodes theorem [18] reduces a finite automaton into a
cascade of irreducible automata. Kupferman & Mosheiff [19]
present various complexity results for DFA decomposability.

Finally, the problem of learning objectives from demonstra-
tions of an expert dates back to the problem of Inverse Optimal
Control [20] and, more recently in the artificial intelligence
community, the problem of Inverse Reinforcement Learning
(IRL) [21]. The goal in IRL is to recover the unknown reward
function that an expert agent is trying to maximize based
on observations of that expert. Recently, several works have
considered a version of the IRL problem in which the expert
agent is trying to maximize the satisfaction of a Boolean task
specification [22], [23], [4]. However, no work considers learn-
ing decompositions of specifications from demonstrations.

II. PROBLEM FORMULATION

Let D denote the set of DFAs over some fixed alphabet
Σ. An (m1, . . . ,mn)-DFA decomposition is a tuple of n
DFAs (A1, . . . ,An) ∈ Dn where Ai has mi states and

1Our algorithm and SAT encoding can easily be generalized to unions or
even arbitrary Boolean combinations of DFAs.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 39 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0003-2726-5159
https://orcid.org/0000-0001-9987-635X
https://orcid.org/0000-0002-1248-0000
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_39
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_39
https://creativecommons.org/licenses/by/4.0/


m1 ≤ m2 ≤ · · · ≤ mn. We associate a partial order ≺ on
DFA decompositions using the standard product order on the
number of states. That is, (A′

1, . . . ,A′
n) ≺ (A1, . . . ,An), if

m′
i ≤ mi for all i ∈ [n] and m′

j < mj for some j ∈ [n]. In
this case, we say (A′

1, . . . ,A′
n) dominates (A1, . . . ,An). A

DFA decomposition (A1, . . . ,An) accepts a string w iff all
Ai accept w. A string that is not accepted is rejected. The
language of a decomposition, L(A1, . . . ,An), is the set of
accepting strings, i.e., the intersection of all DFA languages.

In order to bias towards “simpler” solutions, we further
extend the partial order ≺ over equally sized (i.e., if m′

i = mi

for all i ∈ [n]) decompositions by letting (A′
1, . . . ,A′

n) ≺
(A1, . . . ,An) if (A′

1, . . . ,A′
n) has fewer total non-stuttering

edges than (A1, . . . ,An).
We study the problem of finding a DFA decomposition from

a set of positive and negative labeled examples such that the
decomposition accepts the positive examples and rejects the
negative examples. We start by formally defining the DFA
decomposition identification problem (DFA-DIP), and then
presenting an overview of the proposed approach.

The Deterministic Finite Automaton Decomposition Iden-
tification Problem (DFA-DIP). Given positive examples, D+

and negative examples, D−, and a natural number n ∈ N, find
a (m1, . . . ,mn)-DFA decomposition (A1, . . . ,An) satisfying
the following conditions.
(C1) The decomposition is consistent with (D+, D−):

D+ ⊆ L(A1,A2, . . . ,An),

D− ⊆ Σ∗ \ L(A1,A2, . . . ,An).

(C2) There does not exist a DFA decomposition that dominates
(A1, . . . ,An) and satisfies (C1).

We refer to the set of DFA decompositions that solve an in-
stance of DFA-DIP as the Pareto-optimal frontier of solutions.
Note that for n = 1, DFA-DIP reduces to monolithic DFA
identification. We propose finding the set of DFA decomposi-
tions that solve DFA-DIP by reduction to graph coloring in
SAT and a breadth first search in solution space. Specifically,
we extend the existing work on SAT-based monolithic DFA
identification [13], [15] to finding n DFAs with m1, . . . ,mn

states and q non-stuttering edges such that the intersection of
their languages is consistent with the given examples. On top
of this SAT-based approach, we develop a search strategy over
the numbers of states and edges passed to the SAT solver as
these values are not known a priori.

III. LEARNING DFAS FROM EXAMPLES2

In this section, we present the proposed approach. We start
with the SAT encoding of the DFA decomposition problem and
continue with the Pareto frontier search in the solution space.
We then showcase an example of learning conjunctions of
DFAs from labeled examples. Finally, we present experimental
results and evaluate the scalability of our method.

2Our MIT licensed code is freely available at [24].

A. Encoding DFA-DIP in SAT

We extend the SAT encoding for monolithic DFA identifi-
cation presented in [13], [15], which solves a graph coloring
problem, to finding n DFAs with m1,m2, . . . ,mn states. The
extension relies on the observation that for conjunctions of
DFAs, we need to enforce that a positive example must be
accepted by all DFAs, and a negative example must be rejected
by at least one of the DFAs. Due to space limitations, we only
present the modified clauses of the encoding, and invite reader
to Appendix A of the extended version of the paper [25] for
further details.

The encoding works on an augmented prefix tree acceptor
(APTA), a tree-shaped automaton with nodes corresponding
to prefixes and edges to appending letters, constructed from
given examples, which has paths for each example leading
to accepting or rejecting states based on the example’s label;
therefore, an APTA defines D+ and D− which then constrains
the accepting states, rejecting states, and the transition function
of the unknown DFAs. For each DFA, Ai, the encoding will
associate the APTA states with one of the mi colors for DFA
Ai, subject to the constraints imposed by D+ and D−. APTA
states with the same (DFA-indexed) color will be the same
state in the corresponding DFA. We refer to states of an APTA
as V , its accepting states as V+, and its rejecting states as V−.
Given n for the number of DFAs, m1, . . . ,mn for the number
of states of DFAs, and q for the number of non-stuttering
edges, the SAT encoding uses three types of variables:

1) color variables xk
v,i ≡ 1 (k ∈ [n]; v ∈ V ; i ∈ [mk]) iff

APTA state v has color i in DFA k,
2) parent relation variables ykl,i,j ≡ 1 (k ∈ [n]; l ∈ Σ, where

Σ is the alphabet; i, j ∈ [mk]) iff DFA k transitions with
symbol l from state i to state j, and

3) accepting color variables zki ≡ 1 (k ∈ [n]; i ∈ [mk]) iff
state i of DFA k is an accepting state.

The encoding for the monolithic DFA identification also uses
the same variable types; however, in our encoding, we also
index variables over n DFAs instead of a single DFA. With this
extension, one can trivially instantiate the encoding presented
in [13], [15]. Below, we list the new rules we define for our
problem. For the complete list of rules, see Appendix A of
the extended version of the paper [25].

(R1) A negative example must be rejected by at least one
DFA: ⋀︂

v∈V−

⋁︂
k∈[n]

⋀︂
i∈[mk]

xk
v,i =⇒ ¬zki .

(R2) Accepting and rejecting states of APTA cannot be
merged:⋀︂

v−∈V−

⋀︂
v+∈V+

⋀︂
k∈[n]

⋀︂
i∈[mk]

(xk
v−,i ∧ ¬zki ) =⇒ ¬xk

v+,i.

(R3) Upperbound on the number of non-stuttering edges:∑︂
k∈[n]

∑︂
l∈Σ

∑︂
i,j∈[mk],i̸=j

ykl,i,j ≤ q.

326



In the encoding of [13], [15], we replace the rule stating
that the resulting DFA must reject all negative examples with
(R1), and (R2) is used instead of the original rule stating that
accepting and rejecting states of APTA cannot be merged.
Notice that since a rejecting state of APTA is not necessarily a
rejecting state of a DFA k, we need to use the new rule (R2).
Finally, (R3) enables controlling the maximum number of non-
stuttering transitions. As we shall see, this will enable us to
satisfy (C2).

Theorem 1. Given labeled examples, n for the number of
DFAs, m1, . . . ,mn for the number of states of DFAs, and q
for the number non-stuttering edges, a solution to the above
SAT encoding satisfies (C1) of DFA-DIP.

Proof: We assume that the SAT-based reduction to graph
coloring for monolithic DFA identification given in [13] is
correct. Next, observe that (R3) can only remove solutions and
thus does not effect (C1). Constraint (R1) and (R2) replace
similar constraint in the monolithic encoding given in [13]:
(R1′) a negative example must be rejected by the DFA:⋀︂

v∈V−

⋀︂
i∈[mk]

xv,i =⇒ ¬zi, and

(R2′) accepting and rejecting states of the APTA cannot be
merged: ⋀︂

v−∈V−

⋀︂
v+∈V+

⋀︂
i∈[mk]

xv−,i =⇒ ¬xv+,i.

In the monolithic DFA case, there is only a single DFA so
for ease of notation, we drop the index k. First notice that
constraints (R1′) and (R2′) have no bearing on whether the
DFA accepts each positive example. Therefore, our encoding
automatically requires that each DFA in the DFA decomposi-
tion accepts all of the positive examples and is not constrained
to unecessarily accept any unspecified examples.

Constraint (R1′) ensures that the resulting monolithic DFA
rejects every negative example by making the color of the node
in the APTA associated with the negative example rejecting.
Constraint (R1) replaces this and ensures that at least one of
the DFAs in the DFA decomposition rejects a negative example
by making the color of the node in the APTA associated with
the negative example rejecting in at least one of the n DFAs
in the decomposition. Thus, the language intersection of the
resulting decomposition correctly rejects negative examples.

Constraint (R2′) ensures that all pairs of rejecting and
accepting nodes of the APTA cannot be assigned the same
color (i.e., merged) in the resulting DFAs. Constraint (R2),
which replaces (R2′), ensures that for each DFA in the de-
composition, the pair (xk

v−,i, x
k
v+,i) of accepting and rejecting

nodes of the APTA cannot be assigned the same color only
if DFA k is rejecting the negative example associated with
xk
v−,i (which is handled by constraint (R1)). This allows all

but one DFA in the DFA decomposition to accept negative
examples. Therefore, the language of the decomposition is not
constrained to reject any unspecified examples.

Algorithm 1 Pareto frontier enumeration algorithm.
Require: Positive D+ and negative D− labeled examples and

positive integer n.
1: (P ⋆, Q)← {(1, . . . , 1)} ▷ Initial Pareto front and queue.
2: while Q ̸= ∅ do
3: m← Q.dequeue()
4: if ∄m̂ ∈ P ⋆ s.t. m̂ ≺ m then
5: SAT,A ← SOLVE(n,m,D+, D−) ▷ Omits (R3).
6: if SAT then
7: P ⋆ = P ⋆ ∪ A ▷ Add to the Pareto frontier.
8: else
9: for k = 1, . . . , n do

10: (m′,m′
k)← (m,m′

k + 1)
11: if ordered(m′) then Q.enqueue(m′)

12: return minimize stutter(P ⋆) ▷ Binary search using (R3).

B. Pareto Frontier Search

The SAT encoding detailed in section III-A produces a DFA
decomposition that satisfies (C1), but not necessarily (C2).
In this section, we provide the details of the Pareto frontier
enumeration algorithm that uses the SAT encoding as an inner
loop to find a DFA decomposition that solves DFA-DIP.

Our proposed Pareto frontier enumeration algorithm is a
breadth first search (BFS) over DFA decomposition size tuples
that skips tuples that are dominated by an existing solution.
This BFS is over a directed acyclic graph G = (V,E) formed
in the following way. There is a vertex in the graph for
every ordered tuple of states sizes. There is an edge from
(m1,m2, . . . ,mn) to (m′

1,m
′
2, . . . ,m

′
n) if there exists some

j ∈ [n] such that:

m′
i =

{︄
mi + 1 if i = j;
mi otherwise.

A size tuple (m1, . . . ,mn) is a sink, i.e., the search does
not continue past this vertex, if there exists a (m1, . . . ,mn)-
decomposition that solves DFA-DIP or the size tuple is
dominated by a previously traversed solution. In the prior
case, the associated DFA decomposition is also returned as
a solution on the Pareto-optimal frontier. The BFS starts from
m1 = m2 = · · · = mn = 1, and performs the search
as explained. Algorithm 1 presents the details of the BFS
performed in the solution space for finding the Pareto frontier.

After finding a minimal number of states m1,m2, . . . ,mn

that solve the problem, there still might exist multiple DFA
decompositions of that size that solve (C1). These ties are
broken in favor of DFA decompositions that have the fewest
total non-stuttering edges, q. For each minimal dfa this is done
by a binary search over q and denoted: minimize stutter(•).

Theorem 2. Algorithm 1 is sound and complete; it outputs the
full Pareto-optimal frontier of solutions without returning any
dominated solutions, therefore satisfying (C2) of DFA-DIP.

Proof: See the extended version of the paper [25].

327



Ti
m

eo
ut

 (1
0 

m
in

ut
es

) C
ou

nt

0

2

4

6

8

10

Av
er

ag
e 

Ti
m

e 
(s

ec
on

ds
)

0

120

240

360

480

600

Number of DFAs
2 3 4 5 6 7 8 9 10 11 12

Baseline, 2 Symbols, Time Baseline, 2 Symbols, Timeout Count
Baseline, 4 Symbols, Time Baseline, 4 Symbols, Timeout Count
This Work, 2 Symbols, Time This Work, 2 Symbols, Timeout Count
This Work, 4 Symbols, Time This Work, 4 Symbols, Timeout Count

(a) Experiment results answering (Q1), where we vary number of DFAs.

Ti
m

eo
ut

 (1
0 

m
in

ut
es

) C
ou

nt

0

2

4

6

8

10

Av
er

ag
e 

Ti
m

e 
(s

ec
on

ds
)

0

120

240

360

480

600

Number of Examples
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Baseline, 2 Symbols, 4 DFAs, Time Baseline, 2 Symbols, 4 DFAs, Time Count
Baseline, 4 Symbols, 2 DFAs, Time Baseline, 4 Symbols, 2 DFAs, Time Count
This Work, 2 Symbols, 4 DFAs, Time This Work, 2 Symbols, 4 DFAs, Time Count
This Work, 4 Symbols, 2 DFAs, Time This Work, 4 Symbols, 2 DFAs, Time Count

(b) Experiment results answering (Q2), where we vary number of examples.

Fig. 1. Experiment results evaluating the scalability of our algorithm w.r.t. (a) number of DFAs implied by the examples and (b) number of labeled examples.

C. Example: Learning Partially-Ordered Tasks

We continue with a toy example showcasing the capabilities
of the proposed approach. Later, we use the same class of
decompositions to evaluate the scalability of our algorithm.

(a) Learned DFA recognizing the order-
ing between and .

(b) Learned DFA recognizing the order-
ing between and .

Fig. 2. Learned DFA decomposition.

Inspired from the multi-task
reinforcement learning lit-
erature [26], our example
focuses on partially-ordered
temporal tasks executed in
parallel. Specifically, con-
sider a case where an agent
is performing two ordering
tasks in parallel: (i) observe

before , and (ii) ob-
serve before . A posi-
tive example of such behav-
ior is simply any sequence

of observations ensuring both of the given orderings, e.g.
, and a negative example is any sequence that fails

to satisfy both orderings, e.g. . We generate such
positive and negative examples and feed them to our algorithm.
Figure 2 presents the learned DFAs recognizing ordering sub-
tasks of the example. The intersection of their languages is
consistent with the given observations, and their conjunction
is the overall task realized by the system generating the traces.
The monolithic DFA recognizing the same language has nine
states, and is more complicated (see Figure 4 in Appendix C
of the extended version of the paper [25]).

D. Experimental Evaluation

We evaluate the scalability of our algorithm through ex-
periments with changing sizes of partially-ordered tasks in-
troduced in Section III-C. In our evaluation, we aim to
answer two questions: (Q1) “How does solving time scale
with the number of ordering tasks?”, and (Q2) “How does
solving time scale with the number of labeled examples?”.
We implement our algorithm in Python with PySAT [27], and
we use Glucose4 [28] as the SAT solver. Our baseline is an
implementation of the monolithic DFA identification encoding
from [13], [15] with the same software as our implementation.

Experiments are performed on a Quad-Core Intel i7 processor
clocked at 2.3 GHz and a 32 GB main memory.

To evaluate the scalability, we randomly generate positive
and negative examples with varying problem sizes. For (Q1),
we generate 10 (half of which are positive and half of
which are negative) partially-ordered task examples with (i)
2 symbols, and (ii) 4 symbols, and we vary the number of
DFAs from 2 to 12. For (Q2), we generate 10 to 20 partially-
ordered task examples with (i) 2 symbols and 4 DFAs, and (ii)
4 symbols and 2 DFAs. Half of these examples are positive and
the other half is negative. Since the examples are generated
randomly, we run the experiments for 10 different random
seeds and report the average. We set the timeout limit to 10
minutes, and stop when our algorithm timeouts for all random
seeds.

Figure 1a presents the experiment results answering (Q1),
where we vary the number of DFAs implied by the given
examples. For partially-ordered tasks with 2 symbols, green
solid line is the (monolithic DFA) baseline and the blue solid
is our algorithm. Similarly, for partially-ordered tasks with 4
symbols, pink dashed line is the baseline and the red dashed
line is our algorithm. Figure 1b presents the experiment results
answering (Q2), where we vary the number of examples. For
partially-ordered tasks with 2 symbols and 4 DFAs, green
solid line is the baseline and the blue solid is our algorithm;
for partially-ordered tasks with 4 symbols and 2 DFAs, pink
dashed line is the baseline and the red dashed line is our
algorithm. As expected, the baseline scales better than our
algorithm as we also search for the Pareto frontier and solve
an inherently harder problem. Notice that given 10 examples,
our algorithm is able to scale up to 11 DFAs for tasks with 2
symbols, and 8 DFAs for tasks with 4 symbols; for 2 symbols
and 4 DFAs, it is able to scale up to 60 examples, and for 4
symbols and 2 DFAs, it is able to scale up to 190 examples. As
we demonstrate in the next section, these limits for scalability
are practically useful in certain domains.

IV. LEARNING DFAS FROM DEMONSTRATIONS

Next, we show how our algorithm can be incorporated
into Demonstration Informed Specification Search (DISS) -
a framework for learning languages from expert demonstra-

328



(a) A stochastic grid world environment
with expert demonstrations of an agent try-
ing to accomplish a task.

Positive Negative

(b) Labeled examples conjectured
by DISS.

(c) Go to .

(d) Avoid .

(e) After , go to before .

(f) Monolithic DFA for the example pre-
sented in Section IV.

Fig. 3. Figure 3a shows the stochastic grid world environment. Figure 3b shows the positive and negative examples of the expert’s behavior conjectured by
DISS and Figures 3c to 3e showcases the associated DFA decomposition identified by our algorithm. Figure 3f shows the monolithic DFA learned in [4].

tions [4]. For our purposes a demonstration is an unlabeled
path through a workspace that maps to a string and is biased
towards being accepting by some unknown language. For
example, we ran our implementation of DISS using demonstra-
tions produced by an expert attempting to accomplish a task in
a stochastic grid world environment, the same example used in
[4] and shown in Figure 3a. At each step, the agent can move
in any of the four cardinal directions, but because of wind
blowing from the north to the south, with some probability,
the agent will transition to the space south of it in spite of
its chosen action. Two demonstrations of the task “Reach
while avoiding . If it ever touches , it must then touch
before reaching .” are shown in Figure 3a.

In order to efficiently search for tasks, DISS reduces the
learning from demonstrations problem into a series of iden-
tification problems to be solved by a black-box identification
algorithm. The goal of DISS is to find a task that minimizes
the joint description length, called the energy, of the task and
the demonstrations assuming the agent were performing said
task. The energy is measured in bits to encode an object.

Below, we reproduce the results from [4], but using our
algorithm as the task identifier rather than the monolithic
DFA identifier provided3. The use of DFA decompositions
biases DISS to conjecture concepts that are simpler to express
in terms of a DFA decomposition. To define the description
length of DFA decompositions, we adapt the DFA encoding
used in [4] by expressing a decomposition as the concate-
nation of the encodings of the individual DFAs. To remove
unnecessary redundancy two optimizations were performed.
First common headers, e.g. indicating the alphabet size, were
combined. Second, as the DFAs in a decomposition are
ordered by size, we expressed changes in size rather than
absolute size, see Appendix B in the extended version of the
paper [25] for details.

3To allow exploring more decompositions, with some probability, the num-
ber of DFAs in the decomposition was randomly incremented or decremented
during identification.

A. Experimental Evaluation

In Figures 3c to 3e we present the learned DFA decomposi-
tion along with the corresponding Figure 3b labeled examples
conjectured by DISS to explain the expert behavior. Impor-
tantly, this decomposition exactly captures the demonstrated
task. We note that this is in contrast to the DFA learned
in [4], shown in Figure 3f, which allows visiting after
visiting . Further, we remark that the time required to learn
the monolithic and decomposed DFAs was comparable. In
particular, the number of labeled examples was less than 60
and as with the monolithic baseline, most of the time is not
spent in task identification, but instead conjecturing the labeled
examples. As we saw with in Section III-D, this number of
examples is easily handled by our SAT-based identification
algorithm. Finally, the number of labeled examples that needed
to be conjectured to find low energy tasks was similar for
both implementations (see Figures 5 and 6 in Appendix C
of the extended versoin of the paper [25]). Thus, our variant
of DISS performed similar to the monolithic variant, while
finding DFAs that exactly represented the task.

V. CONCLUSION

To the best of our knowledge, this work presents the first
approach for solving DFA-DIP. Our algorithm works by
reducing the problem to a Pareto-optimal search of the space
of the number of states in a DFA decomposition with a SAT
call in the inner loop. The SAT-based encoding is based on
an efficient reduction to graph coloring. We demonstrated the
scalability of our algorithm on a class of problems inspired by
the multi-task reinforcement learning literature and show that
the additional computational cost for identifying DFA decom-
positions over monolithic DFAs is not prohibitive. Finally, we
showed how identifying DFA decompositions can provide a
useful inductive bias while learning from demonstrations.

REFERENCES

[1] C. De La Higuera, “A bibliographical study of grammatical inference,”
Pattern recognition, vol. 38, no. 9, pp. 1332–1348, 2005.

329



[2] S. Verwer and C. A. Hammerschmidt, “Flexfringe: a passive automaton
learning package,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017, pp. 638–642.

[3] I. Zakirzyanov, A. Morgado, A. Ignatiev, V. Ulyantsev, and J. Marques-
Silva, “Efficient symmetry breaking for sat-based minimum dfa infer-
ence,” in International Conference on Language and Automata Theory
and Applications. Springer, 2019, pp. 159–173.

[4] M. Vazquez-Chanlatte, A. Shah, G. Lederman, and S. A.
Seshia, “Demonstration informed specification search,” CoRR, vol.
abs/2112.10807, 2021. [Online]. Available: https://arxiv.org/abs/2112.
10807

[5] E. M. Gold, “Complexity of automaton identification from given data,”
Information and control, vol. 37, no. 3, pp. 302–320, 1978.

[6] L. Pitt and M. K. Warmuth, “The minimum consistent dfa problem
cannot be approximated within any polynomial,” Journal of the ACM
(JACM), vol. 40, no. 1, pp. 95–142, 1993.

[7] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging
algorithm,” in International Colloquium on Grammatical Inference.
Springer, 1998, pp. 1–12.

[8] K. J. Lang, “Faster algorithms for finding minimal consistent dfas,” NEC
Research Institute, Tech. Rep, 1999.

[9] M. Bugalho and A. L. Oliveira, “Inference of regular languages using
state merging algorithms with search,” Pattern Recognition, vol. 38,
no. 9, pp. 1457–1467, 2005.

[10] P. Dupont, “Regular grammatical inference from positive and negative
samples by genetic search: the gig method,” in International Colloquium
on Grammatical Inference. Springer, 1994, pp. 236–245.

[11] S. Luke, S. Hamahashi, and H. Kitano, “” genetic” programming,” in
Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation-Volume 2, 1999, pp. 1098–1105.

[12] S. M. Lucas and T. J. Reynolds, “Learning dfa: evolution versus
evidence driven state merging,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC’03., vol. 1. IEEE, 2003, pp. 351–358.

[13] M. J. Heule and S. Verwer, “Exact dfa identification using sat solvers,”
in International Colloquium on Grammatical Inference. Springer, 2010,
pp. 66–79.

[14] V. Ulyantsev, I. Zakirzyanov, and A. Shalyto, “Bfs-based symmetry
breaking predicates for dfa identification,” in International Conference
on Language and Automata Theory and Applications. Springer, 2015,
pp. 611–622.

[15] ——, “Symmetry breaking predicates for sat-based dfa identification,”
arXiv preprint arXiv:1602.05028, 2016.

[16] I. Zakirzyanov, A. Shalyto, and V. Ulyantsev, “Finding all minimum-
size dfa consistent with given examples: Sat-based approach,” in In-
ternational Conference on Software Engineering and Formal Methods.
Springer, 2017, pp. 117–131.

[17] P. Ashar, S. Devadas, and A. R. Newton, “Finite state machine decom-
position,” in Sequential Logic Synthesis. Springer, 1992, pp. 117–168.

[18] J. Rhodes, Applications of automata theory and algebra : via the
mathematical theory of complexity to biology, physics, psychology,
philosophy, and games. Singapore Hackensack, NJ: World Scientific,
2010.

[19] O. Kupferman and J. Mosheiff, “Prime languages,” Information and
Computation, vol. 240, pp. 90–107, 2015.

[20] R. E. Kalman, “When is a linear control system optimal,” 1964.
[21] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement

learning,” in ICML. Morgan Kaufmann, 2000, pp. 663–670.
[22] D. Kasenberg and M. Scheutz, “Interpretable apprenticeship learning

with temporal logic specifications,” in CDC. IEEE, 2017, pp. 4914–
4921.

[23] G. Chou, N. Ozay, and D. Berenson, “Explaining multi-stage tasks by
learning temporal logic formulas from suboptimal demonstrations,” in
Robotics: Science and Systems, 2020.

[24] M. Vazquez-Chanlatte, V. Lee, A. Shah, N. Lauffer, and B. Yalcinkaya,
2022. [Online]. Available: https://github.com/mvcisback/dfa-identify/
tree/decomposition

[25] N. Lauffer, B. Yalcinkaya, M. Vazquez-Chanlatte, A. Shah, and
S. A. Seshia, “Learning deterministic finite automata decompositions
from examples and demonstrations,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.13013

[26] P. Vaezipoor, A. C. Li, R. A. T. Icarte, and S. A. Mcilraith, “Ltl2action:
Generalizing ltl instructions for multi-task rl,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 10 497–10 508.

[27] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
[Online]. Available: https://doi.org/10.1007/978-3-319-94144-8 26

[28] N. Eén and N. Sörensson, “An extensible sat-solver,” in International
conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

330

https://arxiv.org/abs/2112.10807
https://arxiv.org/abs/2112.10807
https://github.com/mvcisback/dfa-identify/tree/decomposition
https://github.com/mvcisback/dfa-identify/tree/decomposition
https://arxiv.org/abs/2205.13013
https://doi.org/10.1007/978-3-319-94144-8_26

	Introduction
	Problem Formulation
	Learning DFAs from ExamplesOur MIT licensed code is freely available at dfa-identify.
	Encoding DFA-DIP in SAT
	Pareto Frontier Search
	Example: Learning Partially-Ordered Tasks
	Experimental Evaluation

	Learning DFAs from Demonstrations
	Experimental Evaluation

	Conclusion
	References

