
Clock Reduction in Timed Automata while
Preserving Design Parameters

Beyazit Yalcinkaya
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

beyazit.yalcinkaya@metu.edu.tr

Ebru Aydin Gol
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

ebrugol@metu.edu.tr

Abstract—Timed automata (TA) are widely used to model and
verify real-time systems. In a TA, the real valued variables, called
clocks, measure the time passed between events. The verification
of TA is exponential in the number of clocks. That constitutes
a bottleneck for its application in large systems. To address this
issue, we propose a novel clock reduction method. We aim at
reducing the number of clocks by developing a position (location
and transition) based mapping for clocks. Motivated by that the
locations and transitions of the automaton reflect the modeled
systems physical properties and design parameters; the proposed
method changes the clock constraints based on their positions to
reduce the total number of clocks. To guarantee correctness,
we prove that the resulting automaton is timed bisimilar to the
original one. Finally, we present empirical results for the solution,
which show that the proposed method significantly reduces the
clock count without changing design parameters of the system.

Index Terms—timed automata, clock reduction, bisimulation

I. INTRODUCTION

Cyber-physical systems are everywhere from autonomous
vehicles to medical devices to smart buildings and their
importance is increasing as they are used in various fields. De-
signing reliable and safe real-time systems is among the most
important goals in cyber-physical systems. Formal models are
required for design and verification processes. Timed automata
(TA) [1]–[3], a modeling formalism for real-time systems, lie
at the core of the cyber-physical systems theory. From railroad
crossing systems [4], [5] to cardiac pacemakers [6] to schedul-
ing of real-time systems [7]–[9], TA are used to model and
analyze complex and critical systems. Algorithms for verifying
TA against formal specifications such as temporal logics exist
and implemented in various tools including UPPAAL [10], a
well-known and widely-used tool.

Reducing the number of clocks used in TA has been an
attractive and challenging problem since its first introduc-
tion [1]. In [11], it has been shown that no algorithm can
decide both minimality of the number of clocks and for the
non-minimal case finding an equivalent TA with fewer clocks.
Moreover, the problem of determining whether there exists
an equivalent TA with fewer clocks is also shown to be
undecidable [12]. An effective approach to the clock reduction
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problem is based on construction of a timed bisimilar TA with
fewer number of clocks [13]–[15], as the bisimulation relation
implies language equivalence. There are two main reasons
why the clock reduction problem has been an important task.
Firstly, most of the decidable problems for TA, including
verification, is exponential in the number of clocks [1], [2].
Thus, to reduce computational complexity, it is essential to
represent a TA with fewer number of clocks. Secondly, as these
systems are used in practical areas with limited resources, e.g.
embedded systems, and each clock corresponds to a physical
resource in practice, it is necessary to reduce the clock count
to improve efficiency.

Although, finding a TA with fewer number of clocks is
crucial for computational performance of design and veri-
fication methods and runtime efficiency, in addition to the
semantics of the automaton, it is also important to preserve
design parameters of the system, i.e., locations, transitions,
and constants appearing in clock constraints. Each of these
concepts represents some important feature of the actual
system, i.e., (i) a location may represent a particular state of
the system, e.g. in the dim-light example in [16], off, dim,
and bright locations represent the actual state of the light,
(ii) a transition may perform some actions that is specifically
important for the operation of the whole system, e.g. in
a network of timed automata [10] synchronization channels
on transitions are used for communication between different
TA, and (iii) constants appearing in clock constraints of the
model may reflect some properties of the modeled system,
e.g. in scheduling of real-time systems, constants appearing
in clock constraints are specifications of the modeled system
such as period, deadline, execution time, suspension time
etc. Therefore, the listed design parameters are particularly
important for the modeled system. Moreover, not only are
TA models used for verification, but also they are used for
modeling purposes; in that case, design parameters are crucial
for sustainability and understandability of models.

We argue that both reducing the number of clocks and
preserving design parameters are important with their own
practical concerns. Yet, a general solution for the clock reduc-
tion problem in TA while preserving the design parameters has
not been introduced. In this paper, we propose an algorithm for
this problem based on modifying clocks and clock constraints.



The main contribution of this paper is as follows: Given any
TA, we generate a TA that is timed bisimilar to the original
one, has fewer (or equal) number of clocks as the original
one, and preserves all of the design parameters. Towards this
goal, we make several side contributions: (i) we introduce
new concepts for analyzing relations between clocks in TA,
(ii) we formalize the splitting method for clocks, which was
first addressed as a problem by Saeedloei et al. [15], (iii)
we present an empirical evaluation to demonstrate algorithm’s
performance, and (iv) we present proofs for technical results.

The paper is outlined as follows. Sec. II gives basic def-
initions for TA, derived definitions for the solution, and the
problem formulation. Sec. III includes the proposed methods
and correctness results. Sec. IV presents results of an empirical
evaluation. Sec. V compares proposed algorithm with related
work. Finally, Sec. VI concludes the paper.

II. PRELIMINARIES

A. Timed Automata

Now, we give some basic definitions of theory of timed
automata [2], [17], [18]. For a set of clocks C, Φ(C) is a set
of clock constraints over C. A clock constraint φd ∈ Φ(C) is
defined inductively in the disjunctive normal form as follows:

φd ::= φc | φc ∨ φd (1)
φc ::= True | x < c | x ≤ c | x ≥ c | x > c | φc ∧ φc

where x ∈ C, c ∈ Q, and True denotes the logical true.
Definition 1 (Timed Automata): A timed automaton is a

tuple A = (L, l0, C, I, T ), where
• L is a finite set of locations,
• l0 ∈ L is an initial location,
• C is a finite set of clocks,
• I is a mapping from L to Φ(C), and
• T ⊆ L × L × 2C × Φ(C) is a set of transitions.
t = (ls, lt, λ, φ) ∈ T is a transition from location ls to
location lt. λ is a set of clocks that are reset to zero on
t and φ is a clock constraint tested for enabling t.

Since our solution does not include any operation on the
particular language of the automaton, for the sake simplicity,
we omit an alphabet in our TA definition. Moreover, we
use a trivial extension of the traditional TA definition for
the clock constraints by allowing disjunctions. A transition
with a disjunction can be easily converted into the traditional
definition by defining transitions with the same source, target,
and set of clocks to be reset for each conjunction. Similarly
a location with a disjunction in its invariant can be mapped
to the classical definition by creating a new location for each
conjunction with identical incoming and outgoing transitions.

A time sequence τ = τ1τ2τ3 . . . is an infinite sequence of
time values τi ∈ R≥0, satisfying the following:

1) Monotonicity: τi < τi+1 for all i ≥ 1.
2) Progress: For every t ∈ R, there is some i ≥ 1 such

that τi > t.
A clock interpretation ν for a set of clocks C is a mapping

from C to R≥0, that is, it assigns a nonnegative real value to

each clock in C. ν satisfies a clock constraint if and only if
that constraint evaluates to true when the values given by ν
are used. For a clock interpretation ν and for some δ ∈ R≥0,
ν+ δ increments clock interpretation of every clock by δ, i.e.,
maps ν(x) to ν(x)+δ for each x ∈ C. For D ⊆ C, ν[D := 0]
assigns 0 to each y ∈ D and agrees with ν for each x ∈ C\D.

Definition 2 (Timed Transition System): A timed transition
system for a timed automaton A = (L, l0, C, I, T ) is a
transition system T (A ) = (Q, q0,→), where
• Q = {(l, ν) is the set of states, where l ∈ L, ν ⊆ R|C|≥0

is a clock interpretation over C, and ν |= I(l)},
• q0 = (l0, ν0) ∈ Q where ν0(x) = 0 for each x ∈ C, is

the initial state, and
• →⊆ (Q×R≥0×Q)∪ (Q×Q) is a relation consisting of

moves. There are two kinds of moves, listed as follows.
1) Due to time elapse. For δ ∈ R≥0, (l, ν) ∈ Q, and

(l, ν+δ) ∈ Q, (l, ν)
δ−→ (l, ν+δ) if for all δ′ ∈ [0, δ],

ν + δ′ evaluates I(l) to true.
2) Due to a transition. For t = (l, l′, λ, φ) ∈ T , (l, ν) ∈

Q, and (l′, ν[λ := 0]) ∈ Q, (l, ν) → (l′, ν[λ := 0])
if ν evaluates both φ and I(l′) to true.

For the sake of simplicity of the presentation of the results, we
assume that for any TA, there is a transition called initiation
transition, i.e., t0 = (l̃, l0, C, True) where l̃ /∈ L is just
an hypothetical location that does not exist, l0 is the initial
location, C is the set of clocks, and t0 ∈ T . This transition
guarantees that, initially, all clocks are zero.

A run ρ of a timed automaton A = (L, l0, C, I, T ) is an
infinite sequence defined over the associated timed transition
system T (A ) = (Q, q0,→) as follows:

ρ : q0
τ1−→ q0 → q1

τ2−τ1−−−−→ . . .
τi−τi−1−−−−−→ qi−1 → qi

τi+1−τi−−−−−→ . . .
(2)

where τ = τ1τ2 . . . is a time sequence and qi ∈ Q for each i.
Definition 3 (Timed Bisimulation): Let T (A ) = (Q, q0,→)

and T (A ′) = (Q′, q′0,→′) be two timed transition systems
defined over timed automata A and A ′. A timed bisimulation
is an equivalence relation ≈T defined over Q×Q′ such that
whenever q1 ≈T q′1,

P1 if q1
δ−→ q2 for δ ∈ R≥0 (or q1 → q2), then there exists

q′2 with q′1
δ−→′ q′2 (or q′1 →′ q′2) and q2 ≈T q′2, and

P2 if q′1
δ−→′ q′2 for δ ∈ R≥0 (or q′1 →′ q′2) , then there

exists q2 with q1
δ−→ q2 (or q1 → q2) and q2 ≈T q′2.

T (A ) and T (A ′) are timed bisimilar if there is a bisimulation
relation ≈T ⊆ Q×Q′ and (q0, q

′
0) ∈≈T . Two timed automata

A and A ′ are timed bisimilar if the corresponding timed
transition systems T (A ) and T (A ′) are timed bisimilar. It
is denoted by A ≈ A ′.

In the rest of the paper, it is assumed that in a TA all
locations are reachable. Notice that it does not affect the
generality of the proposed method, since it has been shown
that the reachability problem for TA is decidable [16], [17] and
an algorithm has been given for the reachability analysis [16].
Thus, for any given timed automaton, the proposed method
can be applied after reachability analysis.



B. Derived Definitions

In the following, a set of definitions over a timed automaton
A = (L, l0, C, I, T ) and ∆ = {≤,≥, <,>} is given. These
are defined to simplify the notation in the proposed methods.
• source : T → L. It gives the source of the given

transition. For t = (ls, lt, λ, φ) ∈ T , source(t) = ls.
• target : T → L. It gives the target of the given transition.

For t = (ls, lt, λ, φ) ∈ T , target(t) = lt.
• clocks : Φ(C)→ 2C . It gives the set of all clocks tested

in a given constraint. For φ ∈ Φ(C),

clocks(φ) =


{} if φ = True

{x} if φ = x ∼ c

clocks(φ1) ∪ clocks(φ2)

if φ = φ1 ∨ φ2 or φ = φ1 ∧ φ2

• resets : C → 2L. It gives the set of locations in which a
given clock is reset in an incoming transition. For x ∈ C,
resets(x) = {lt | (ls, lt, λ, φ) ∈ T and x ∈ λ}.

• controls : C → 2L. It gives the set of all loca-
tions on which given clock is tested as an invariant or
it is tested on an outgoing transition. controls(x) =
{l | x ∈ clocks(φ) for (ls, lt, λ, φ) ∈ out(l) or x ∈
clocks(I(l))}, where out(l) = {(ls, lt, λ, φ) ∈ T | ls =
l} is the set of outgoing transitions from l.

Fig. 1. A timed automaton A = (L, l0, C, I, T ) where L =
{l0, l1, l2, l3, l4, l5, l6, l7}, l0 is the initial location, C = {x, y, z, w},
I(l0) = w < 1, I(l3) = x < 2, I(li) = True for li ∈ L \
{l0, l3}, and T = {t0 = (l̃, l0, C, True), t1 = (l0, l1, λ1, φ1), t2 =
(l1, l2, λ2, φ2), t3 = (l1, l3, λ3, φ3), t4 = (l2, l4, λ4, φ4), t5 =
(l3, l5, λ5, φ5), t6 = (l4, l6, λ6, φ6), t7 = (l5, l6, λ7, φ7)}, t8 =
(l6, l7, λ8, φ8)}.

l0

start

w < 1

l1

l2

l3

x < 2

l4

l5

l6 l7
x := 0

y := 0

z := 0

x < 4

y := 0

z < 4

y < 8

Example 1: A timed automaton is given in Fig. 1, which will
be used as a running example throughout the paper. Sample
derived definitions for this automaton are:
• source(t1) = l0, target(t1) = l1, clocks(φ4) = {x}
• resets(x) = {l0, l1}, and controls(x) = {l2, l3}.

C. Problem Formulation

The verification problem for a TA has an exponential com-
plexity on the number of clocks [1], [2]. Therefore, it is crucial
to use minimal number of clocks for computational efficiency.
However, for the designer, locations, transitions, constraint
constants, and their place of appearance in the automaton
may represent some important features of the system that
needs to be shown in the model. Consequently, it is important
to preserve these distinguishing features while reducing the
number of clocks. In the problem definition given below,

constraints over the construction of a timed bisimilar TA Am

emphasize preservation of these crucial design parameters of
the original TA while reducing the number of clocks.

Problem 1: Given a TA A = (L, l0, C, I, T ), construct
a new TA Am = (L, l0, Cm, Im, Tm) such that (i) the
underlying graph of both are the same, (ii) set of constants
appearing on the constraints of invariants and transitions are
the same for both TA, (iii) |Cm| ≤ |C|, and (iv) Am ≈ A .

We propose to solve Prob. 1 by analyzing reset and control
positions (transitions and locations) of the clocks. The pro-
posed solution, first, eliminates unnecessary resets and then
reduces each clock to its minimal form. In particular, first, a
new automaton As that is timed bisimilar to A is generated
such that each clock is reset and controlled in at most one
position in As. Then, the relations between the clocks of As

are analyzed and mapped to a graph coloring problem. The
solution of the coloring problem shows the clocks that can
be represented by the same clock, i.e. clocks painted with the
same color can be represented with a single clock, which is
used to define Am that is timed bisimilar to As (hence to A ).

III. TIMED AUTOMATA CLOCK REDUCTION

In this section, we present our solution for Prob. 1. First,
we present the proposed clock analysis method that identifies
the clocks that can be merged to reduce the total number of
clocks used in the TA. We prove that the TA obtained after
the clock merge operation is timed bisimilar to the original
one. Then, we introduce the splitting method over the clocks
of TA and we prove that splitting clocks of a TA does not
change the semantics, i.e., the obtained TA after splitting is
timed bisimilar to the original one. Finally, we present the
main algorithm that combines these methods, and prove that
the resulting TA is a solution for Prob. 1.

A. Clock Analysis and Dependency Computation

In this section, we present the proposed dependency analysis
methods for the clocks of a TA A = (L, l0, C, I, T ). The aim
is to find the clocks that can be merged without changing
the semantics. The clock merge operation, simply, takes two
clocks x, y ∈ C, replaces each occurrence of y with x, and
generates a TA with the set of clocks C \ {y}.

Definition 4 (Merge): The automaton obtained from A =
(L, l0, C, I, T ) by merging clocks x, y ∈ C is defined as
A x←y = (L, l0, C \{y}, I ′, T ′), where I ′ and T ′ are obtained
by replacing each occurrence of y with x from I and T ,
respectively, by the mappings µΛ : 2C × C × C → 2C and
µΦ : Φ(C) × C × C → Φ(C) which are defined as follows
for λ̄ ∈ 2C , φ̄ ∈ Φ(C), and x, y ∈ C:

µΛ(λ̄, x, y) =

{
λ̄ if y /∈ λ̄
λ̄ \ {y} ∪ {x} if y ∈ λ̄

(3)

µΦ(φ̄, x, y) =


φ̄ if y /∈ clocks(φ̄)

(x ∼ c ∧ µΦ(φc, x, y)) ∨ µΦ(φd, x, y)

if φ̄ = (y ∼ c ∧ φc) ∨ φd
(4)



Using µΛ and µΦ, I ′ and T ′ are found as follows:
• For each l ∈ L, I ′(l) = µΦ(I(l), x, y).
• T ′ =

⋃
(ls,lt,λ̄,φ̄)∈T {(ls, lt, µΛ(λ̄, x, y), µΦ(φ̄, x, y))}.

In the remainder of this section, we present methods to find
x, y ∈ C such that A ≈ A x←y .

Definition 5 (Path): For a TA A = (L, l0, C, I, T ), a path
is defined as a finite sequence of locations p = l1l2 . . . ln
such that for each i < n, there exists a t ∈ T such that
source(t) = li and target(t) = li+1. The set of all paths
between two locations ls, le ∈ L is defined as

P(ls, le) = {p = ls . . . le | p is a path from ls to le} (5)

In the analysis, we first eliminate resets that do not affect
the execution of the TA. A reset of a clock x on a transition
(ls, lr, λ, φ) such that x ∈ λ is unnecessary if (6) or (7) holds.⋃

lc∈controls(x)

P(lr, lc) = ∅ (6)

x ∈
⋂

lc∈controls(x),
P(lr,lc)6=∅

 ⋂
l1...ln∈P(lr,lc)

(
∪ i=1,...,n−1,

(li,li+1,λi,φi)∈T
λi

) (7)

Eqn. (6) indicates that no control location for clock x is
reachable from lr; hence, the value of x will not be controlled
after lr. Eqn. (7) indicates that clock x is reset on every path
from lr to a control location of x. In this case, after lr, clock x
will reset again before it’s value is controlled. Consequently,
in both cases, the reset of x on (ls, lr, λ, φ) is unnecessary.
For each x ∈ C and reset transition (ls, lr, λ, φ), if (6) or (7)
holds, we remove the reset by defining a new transition set:

T ′ := (T \ {(ls, lr, λ, φ)}) ∪ {(ls, lr, λ \ {x}, φ)} (8)

Proposition 1: For TA A = (L, l0, C, I, T ), let clock
x ∈ C and transition (ls, lr, λ, φ) ∈ T satisfy (6) or (7).
Then, automaton A ′ = (L, l0, C, I, T

′), where T ′ is as defined
in (8), is timed bisimilar to A .

Proof: The proof follows from that the value of clock x
is not read before it is reset again from location lr. Hence,
removing x from λ does not effect the execution of A .

Definition 6 (Scope): Scope of a clock x ∈ C is the set
of all paths p between locations ls and le such that (i) ls ∈
resets(x), (ii) le ∈ controls(x), and (iii) x is not reset on p:

S(x) = {l1 . . . ln ∈ P | li /∈ resets(x) for i = 2, . . . , n}
(9)

where P = {p ∈ P(l, l′) | l ∈ resets(x), l′ ∈ controls(x)}

The scope of a clock refers to the set of paths of a TA
in which the value of the clock is needed and it should not
be intervened. Consequently, the scope can be used to decide
whether one clock can be written in the place of another, i.e.,
merged into another one. Note that unnecessary resets (satisfy-
ing (6) or (7)) do not affect the scope computation. However,
it is required to remove them for the merge operation. The
scopes and resets of the clocks induce an equivalence relation,
called dependency relation D ⊆ C × C:

Definition 7 (Dependency): Clocks x, y ∈ C are dependent
(x, y) ∈ D if and only if x (or y) is reset in the scope of y
(or x), i.e. (10) or (11) holds:

resets(x)
⋂ ⋃

l1l2...ln∈S(y)

{l2, . . . , ln}

 6= ∅ (10)

resets(y)
⋂ ⋃

l1l2...ln∈S(x)

{l2, . . . , ln}

 6= ∅ (11)

If a clock is reset in the scope of another, then we say that
these two clocks are dependent. Notice that the first location
of the path is not checked in (10) (or in (11)), since clock
y (or x) is reset on this location, and synchronous resets do
not introduce dependency. Dependent clocks cannot be merged
since in a path of the TA in which the value of one is needed,
the other one is reset. Therefore, merging them would change
the semantics of the automaton. To find the optimum set of
clocks that can be merged, we analyze the graph induced by
the dependency relation.

Definition 8 (Dependency Graph): The dependency graph
is an undirected graph represented as G = (C,D). Its vertices
consists of clocks of the TA and there is an edge between two
nodes if and only if corresponding clocks are dependent.

Dependency graph of a given TA gives us a visual and
more clear understanding of the dependency relations between
clocks of the TA and it enables us to use some well-defined
methods from the graph theory to reduce the number of clocks.

Fig. 2. Dependency graph G = (C,D) of the TA in Fig. 1.
x

y z

w

Example 2: For the TA A = (L, l0, C, I, T ) given in Fig. 1:
• P(l0, l7) = {l0l1l2l4l6l7, l0l1l3l5l6l7}
• S(y) = {l2l4l6, l5l6}
• D = {(x, y), (x, z), (y, z)}
• G = (C,D) is given in Fig. 2.
The TA obtained by merging independent clocks is timed

bisimilar to the original one:
Theorem 1: Let x, y ∈ C, (x, y) 6∈ D and A x←y =

(L, l0, C \ {y}, I ′, T ′) be the automaton obtained from A =
(L, l0, C, I, T ) by merging x and y according to Def. 4., then
A x←y ≈ A .

Proof: Here, we present the main idea of the proof and
a sketch of it, and refer the interested reader to Appendix for
a complete version of the proof.

Let T (A ) = (Q, q0,→) and T (A x←y) = (Q′, q′0,→′)
be the two timed transition systems defined over TA A and
A x←y as in Def. 2, respectively. We claim that R ⊆ Q×Q′
is a bisimulation relation:
R = {((l, ν), (l, ν′)) | ν(z) =ν′(z)∀z ∈ C \ {x, y}

and ν′(x) = M(l, (ν(x), ν(y)))},
(12)



where M : L × (a, b) → {a, b}. The mapping is computed
according to scope(y) on A . First, define the set of locations
Lz ⊆ L that appear on the scope of a clock z ∈ C as:

Lz =
⋃

p=l1...ln∈S(z)

{l1, . . . , ln} (13)

Then the mapping is computed according to Ly (13) as
follows:

M(l, (ν(x), ν(y))) =

{
ν(y) if l ∈ Ly
ν(x) otherwise

(14)

The mapping, M , defines the value of clock x on T (A x←y)
as ν(x) or ν(y) based on location l for relation R. Note that
if l appears on the scope of both clock x and clock y, i.e.
l ∈ Lx ∩ Ly , then they reset on the same transition before
reaching l. As they have the same value, the one picked by
M is irrelevant in terms of clock constraints. If they do not
have the same value, and a location l appears on both of
the scopes, then one of them is reset in the scope of another
one, which implies that they are dependent (contradicts with
the assumption). Therefore, for any ((l, ν), (l, ν′)) ∈ R the
following holds, which summarizes the preceding discussion.

ν′(x) =


ν(x) and ν(x) = ν(y) if l ∈ Lx ∩ Ly
ν(x) if l 6∈ Ly
ν(y) if l ∈ Ly \ Lx

(15)

For independent clocks x and y, ν(x) = ν(y) for each l ∈
Lx∩Ly and (l, ν) ∈ Q. In other words, either Lx∩Ly is empty,
or for each location that lies in the intersection, the clocks
always have the same value. Therefore, it is safe to use one
clock in the place of another, which is achieved via mapping
M (14). Essentially, for any φ ∈ Φ(C), and (l, ν) ∈ Q that is
reachable from the initial state q0, if ((l, ν), (l, ν′)) ∈ R, then

MP: φ holds for ν if and only if µΦ(φ, x, y) holds for ν′,
(16)

where µΦ is as defined in (4). In Appendix, we prove that
the bisimulation property (P1 and P2 in Def. 3) holds for R
for both time elapse and location change transitions by using
property MP (16). Therefore, R is a timed bisimulation rela-
tion. Observing that the initial states of T (A ) and T (A x←y)
are related in R, i.e. (q0, q

′
0) ∈ R, q0 = (l0, ν0), ν0(z) =

0,∀z ∈ C, q′0 = (l0, ν
′
0), ν0(z) = 0,∀z ∈ C \ {y} and

((l0, ν0), (l0, ν
′
0)) ∈ R, completes the proof of A x←y ≈ A .

Example 3: For the TA given in the Fig. 1, the dependency
graph is given in the Fig. 2. Merging two independent clocks
x and w does not change the semantics of the TA.

In some exceptional cases, merging two dependent clocks
does not change the semantics of the TA as in Ex. 4. Thm 1
states that it is safe to merge independent clocks. However, it
cannot be concluded that merging only independent clocks
gives the minimal number of clocks. Yet for the practical
concerns analyzing only independent clocks for merging is
sufficient (see Sec. IV). Note that it is required to analyze the
satisfiability of the constraints to merge the clocks in Ex. 4.

Fig. 3. The TA Ā = (L̄, l̄0, C̄s, Īs, T̄s).

l̄0

start
x := 0

l̄1 l̄2 l̄3

y := 0

x > 4 ∧ y > 4

Example 4: For the TA Ā given in the Fig. 3, merging
clocks x and y does not change the semantics of the TA
even though these two clocks are dependent. Notice that, the
constraint on the merged automaton is x > 4∧x > 4 ≡ x > 4.

Corollary 1: Let X ⊆ C such that (x, y) 6∈ D for any x, y ∈
X with x 6= y, and let A x←X be the automaton obtained by
iteratively merging all clocks in X . Then A x←X ≈ A .

Proof: Consider x, y ∈ X . Since (x, y) 6∈ D and
unnecessary resets are removed via (6) and (7), controls(y)
is not reachable from resets(x) without passing through
resets(y) (and vice versa). As the scope of a clock is the
set of all locations along the paths from the targets of the
reset transitions to control locations without passing through
other resets, the scope of x on A x←y , denoted as Sx←y(x)
equals to the union of scopes x and y on A :

Sx←y(x) = S(x) ∪ S(y). (17)

By (3), the resets of x on A x←y , denoted as resetsx←y(x),
equals to the union of resets of x and y on A :

resetsx←y(x) = resets(x) ∪ resets(y). (18)

Now consider z ∈ X \ {x, y}. By (17) and (18), and the
scope definition (9), clocks x and z are independent on A x←y .
Therefore, they can be merged. Iterative application of this
argument completes the proof.

In order to find the automaton with fewer clocks by applying
Cor. 1 for the independent clocks, we need to find a set
of set of clocks {C1, . . . , Cn} that is a partition of C (i.e.,
Ci ∩ Cj = ∅, C = ∪i=1Ci) with minimal cardinality such that
every pair of clocks x, y ∈ Ci are independent, (x, y) 6∈ D, on
A for each set Ci. Then, we can merge each set to obtain Am

with n ≤ |C| clocks that is timed bisimilar to A . Finding
such a partition with minimal cardinality maps to the well-
known graph coloring problem on the graph defined by the
dependency relation [19]. In graph coloring problem, the goal
is to assign a color to each vertex such that no neighboring
vertices are assigned the same color. The smallest number of
colors needed to color a graph is called its chromatic number.
When the coloring problem is applied to the dependency
graph, the clocks with the same color can be merged as in
Cor. 1 to reduce the number of clocks.
Fig. 4. The TA obtained after merging independent clocks of A from Fig. 1.
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Example 5: A partition of the set of clocks obtained by
applying graph coloring algorithm to the dependency graph in
Fig. 2 is {{x,w}, {y}, {z}}. The TA obtained after merging
clocks in each set from this partition is given in Fig. 4.

Notice that, number of clocks of the TA in Fig. 4 can
be further improved. In particular, the clock count can be
reduced to two while satisfying the constraints in Prob. 1.
In the original TA from Fig. 1, there are clocks reset or
controlled in more than one position which may cause some
pseudo-dependencies between clocks, i.e. it generates some
dependency relations which can be avoided by assigning
unique clocks for each reset-control pair. We formalize this
intuition in the next section.

B. Splitting

The dependency analysis might fail to find the minimum
number of clocks if a clock is reset or controlled in multiple
places as shown in Ex. 5. In any TA, the clocks of the
automaton are reset to zero in some transitions and they
are controlled with some constraints on transitions and/or in
locations. Thus, each clock can be observed as a set of resets
and a set of controls. By this observation, in a TA, the minimal
form of a clock is one reset and one corresponding control.
We reduce each clock to its minimal form by splitting, i.e.,
we assign a new clock to each reset-control pair. We prove
that the resulting TA is timed bisimilar to the original one.

Definition 9 (Clock split): Given a TA A = (L, l0, C, I, T )
and a clock x ∈ C, a TA As,x = (L, l0, Cs, Is, Ts) in minimal
form for clock x is defined via clock πC : C → 2Cs , reset
πΛ : C×T → 2Cs , transition πT : C×T → Ts and constraint
πΦ : C × Φ(C)→ Φ(Cs) transformations.
• Cs = πC(x) ∪ C \ {x}, where πC(x) = {xi,j | 1 ≤
i ≤ |resets(x)|, 1 ≤ j ≤ |controls(x)|} is the set of
clocks obtained by splitting x (i.e. a new clock for each
reset-control pair).

• Is(l) = πΦ(x, I(l)) where πΦ generates a clock con-
straint over Φ(Cs) by iteratively mapping the constraints
on x to πC(x) as follows:

πΦ(x, x ∼ c ∧ φc ∨ φd) = (19)
((x1,j ∼ c ∨ . . . ∨ x|resets(x)|,j ∼ c) ∧ φc) ∨ φd

if ∼∈ {<,≤}
(x1,j ∼ c ∧ . . . ∧ x|resets(x)|,j ∼ c ∧ φc) ∨ φd

if ∼∈ {>,≥}

where x ∼ c is the jth control of x. The transforma-
tion (19) is applied iteratively for each x ∼ c in φ until
all constraints on x are mapped to constraints on πC(x).

• πΛ : C × T → 2Cs transforms resets on x:

πΛ(x,(ls, lt, λ, φ)) = (20)

λ \ {x} ∪

{
∅ if x 6∈ λ
{xi,1, . . . , xi,|controls(x)|} if x ∈ λ

where i is the index of lt in resets(x).

• Ts =
⋃
t∈T πT (x, t), where

πT (x, (ls, lt, λ, φ)) = (ls, lt, πΛ(x, (ls, lt, λ, φ)), πΦ(x, φ))
(21)

Thus, clock x ∈ C is reduced to its minimal form by
defining a new set of clocks Cs, a new set of transitions Ts,
and a new mapping for invariants Is, that is each clock xi,j in
Cs has only one reset and only one constraint defined over it.
Furthermore, the resulting TA in minimal form As,x is timed
bisimilar to A :

Theorem 2: The TA As,x = (L, l0, Cs, Is, Ts) obtained by
splitting x on A = (L, l0, C, I, T ) as given in Def. 9 is timed
bisimilar to A , i.e., As ≈ A .

Proof: Let T (A ) = (Q, q0,→) and T (As,x) =
(Q′, q′0,→′) be the two timed transition systems defined over
TA A and As as in Def. 2, respectively. Define mapping
MC : R|Cs|

≥0 → R|C|≥0 :

ν(y) =

{
min{ν′(xi,j) | xi,j ∈ πC(x)} if y = x (for clock x)
ν′(y) otherwise

(22)
We claim that R is a timed bisimulation relation:

R = {(q = (l,MC(ν′)), q′ = (l, ν′)) |(l, ν′) ∈ Q′ (23)
and q′ is reachable from q′0}

First, observe that the splitting operation guarantees that
ν′(xi,a) = ν′(xi,b) for any (l, ν′) ∈ Q′ since xi,a and xi,b are
reset on the same transition. Consider a state q′ = (l, ν′) ∈ Q′

that is reachable from q′0, let ρ′ : q′0
τ1−→ q′0 → q′1

τ2−τ1−−−−→
. . .

τn−τn−1−−−−−−→ q′n−1 → q′n = q′ be a run from q′0 to q′.
Notice that ν′(x1,j), . . . , ν

′(x|resets(x)|,j) measures the time
passed since each reset of x on A and the minimum of them
represents the time passed since the last reset along the run.
Therefore, mapping clock valuations via MC defines a run
ρ : q0

τ1−→ q0 → q1
τ2−τ1−−−−→ . . .

τn−τn−1−−−−−−→ qn−1 → qn = q of
A from q0 to q, where qi = (li,M

C(ν′i)) and q′i = (li, ν
′
i) for

each i = 1, . . . , n. In the following, we formalize this intuition
and prove the bisimulation property for R. Let l ∈ controls(x)
be the jth control for x and let x ∼ c be corresponding
constraint. Consider ((l, ν), (l, ν′)) ∈ R and transformed
constraints:

∼∈ {<,≤} : πΦ(x ∼ c) = x1,j ∼ c ∨ . . . ∨ x|resets(x)|,j ∼ c
(24)

∼∈ {>,≥} : πΦ(x ∼ c) = x1,j ∼ c ∧ . . . ∧ x|resets(x)|,j ∼ c
(25)

Constraint x ∼ c holds for ν if and only if πΦ(x ∼ c) (24)
(or (25)) holds for ν′ since ν(x) = min{ν(xi,j) | i =
1, . . . , |resets(x)|}.

CP: Given the argument above, considering that the con-
straints C\{x} are the same on both A and As,x and mapping
MC (22) preserves values of clocks C \{x}, we conclude that
a clock constraint φ holds for ν if and only if πΦ(φ) holds
for ν′ for any ((l, ν), (l, ν′)) ∈ R.

Consider ((l, ν), (l, ν′)) ∈ R:



Location change, Proof of P1: Assume that (l, ν) →
(lt, νt). Then there is a transition (l, lt, λ, φ) ∈ T such
that φ holds for ν, and νt = ν[λ := 0]. Then, πΦ(φ)
holds for ν′ via CP. The construction of As,x guarantees
that (l, lt, φΛ((l, lt, λ, φ)), πΦ(φ)) ∈ Ts. Therefore, (l, ν′) →′
(lt, ν

′
t) where ν′t = ν′[φΛ((l, lt, λ, φ) := 0]. By (20), it holds

that λ \ {x} = φΛ((l, lt, λ, φ)) \ πC(x). Therefore, for any
y ∈ C \ {x}, ν′t(y) = νt(y). For clock x, consider two cases.

i. x 6∈ λ. Then νt(x) = ν(x), and φΛ((l, lt, λ, φ))∩πC(x) =
∅ (see (20)). Consequently, ν′(xi,j) = ν′t(xi,j),∀xi,j ∈ πC(x).
As νt = MC(ν′t), ((lt, νt), (lt, ν

′
t)) ∈ R.

ii. x ∈ λ. Then, xi,j ∈ φΛ((ls, lt, λ, φ)) for some xi,j . In
other words, a clock obtained via split of x is reset on the
transition. Then, by (22), νt(x) = ν′t(xi,j) = 0. Consequently,
((lt, νt), (lt, ν

′
t)) ∈ R.

Location change, Proof of P2: Assume that
(l, ν′) → (lt, ν

′
t). Then there is a transition

(l, lt, φΛ((l, lt, λ, φ)), πΦ(φ)) ∈ Ts such that πΦ(φ) holds for
ν′, and ν′t = ν′[φΛ((l, lt, λ, φ) := 0]. Then, φ holds for ν
via CP. Therefore, (l, ν) → (lt, νt) where νt = ν[λ := 0].
Similar to the proof of P1, for any y ∈ C \{x}, ν′t(y) = νt(y)
by (20). Furthermore, φΛ((ls, lt, λ, φ)) ∩ πC(x) 6= ∅ if and
only if x ∈ λ. Therefore, it follows from i. and ii. that
((lt, νt), (lt, ν

′
t)) ∈ R, which completes the proof for P2.

Proofs for time elapse transitions for P1 and P2 directly
follow from the application of CP on invariant constraints
and constraint mapping (19). Observing that (q0, q

′
0) ∈ R,

completes the proof.
In some cases, naively applying the splitting operation may

result into redundant reset-constraint pairs, i.e. clocks with
constraints that are not reachable from their related resets. We
avoid such cases in our solution by checking the reachability
of each constraint from its related reset before assigning a
unique clock to it. Essentially, in splitting operation, instead of
πC(x), we use π′C(x) = {xi,j ∈ πC(x) | RC holds for xi,j}
where RC is the reachability condition, i.e. RC: There is a
path from li,r to lc,j on which x is not reset, where li,r is ith

reset location and lc,j is the jth control location of the clock x.
The reachability condition guarantees that using π′C(x) instead
of πC(x) does not change the semantics of TA.

Splitting a clock may produce two dependent clocks which
may result in increased number of clocks after the merge
operation. We present such a problematic case in Ex 6.

Fig. 5. The TA Ā = (L̄, l̄0, C̄s, Īs, T̄s).

l̄0

start
x := 0

l̄1 l̄2 l̄3

x := 0

x < 4

Fig. 6. The TA Ā ′ = (L̄′, l̄′0, C̄
′
s, Ī

′
s, T̄

′
s).

l̄0

start
x1 := 0

l̄1 l̄2 l̄3

x2 := 0

x1 < 4 ∨ x2 < 4

Example 6: The TA Ā = (L̄, l̄0, C̄s, Īs, T̄s) given in Fig. 5
has only one clock x. After applying splitting operation as in-

troduced above, we obtain an new TA Ā ′ = (L̄′, l̄′0, C̄
′
s, Ī
′
s, T̄

′
s)

given in Fig. 6 with two dependent clocks x1 and x2.
As Ex.6 implies, splitting clocks of a TA may increase the

dependent number of clocks; hence, increase total number
of clocks at the end of the analysis. In our solution we
avoid splitting such clocks and we apply splitting operation
if all clocks in the set of clocks obtained after splitting are
independent. Hence, we safely conclude that our solution does
not increase the number of clocks in the model.

Fig. 7. The TA As = (L, l0, Cs, Is, Ts), obtained after splitting the clocks
of the TA in Fig. 1.
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l6 l7
x1,1 := 0

x1,2 := 0

y1,1 := 0

z1,1 := 0

x1,1 < 4

y2,1 := 0

z1,1 < 4

y1,1 < 8 ∨ y2,1 < 8

Fig. 8. Dependency graph Gs of As.
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y1,1 y2,1

z1,1

w1,1

Example 7: For the given TA A = (L, l0, C, I, T ) in
Fig. 1, after the splitting operation we obtain TA As =
(L, l0, Cs, Is, Ts) shown in Fig. 7. The dependency graph Gs
of As is given in Fig. 8. Note that before splitting operation,
unnecessary resets are removed from A .

C. Clock Reduction Algorithm

In this section, we combine dependency analysis and split-
ting method and prove that the proposed approach solves
Prob. 1. First, we remove all unnecessary resets and split
clocks that does not introduce dependent clocks, then we apply
dependency analysis and graph coloring on clocks, finally we
merge the clocks according to the partition obtained from
graph coloring. The algorithm is given in Alg. 1. Notice that, in
the last step, we remove t0 and add a new initiation transition.

Theorem 3: The TA Am = (L, l0, Cm, Im, Tm) obtained
from Alg. 1 is timed bisimilar to the TA A = (L, l0, C, I, T ).

Proof: Ar ≈ A via repeated applications of Prop. 1.
As ≈ Ar by repeated applications of Thm. 2. A xi←Ci

m ≈
A
xi−1←Ci−1
m for each i = 1, . . . , n by Cor. 1. Since initially

Am = As and lastly Am = A xn←Cn
m , it follows from the

transitivity of timed bisimulation relation that Am ≈ A .
Theorem 4: The TA Am = (L, l0, Cm, Im, Tm), result of

Alg. 1 on A = (L, l0, C, I, T ), is a solution for Prob. 1.
Proof: The resulting TA Am = (L, l0, Cm, Im, Tm) has

the same set of locations and the same initial transition. Since
we only apply transformations changing set of clocks that
are reset on a transition and constraints on a transition, for
each (ls, lt, λ, φ) ∈ T , there exists a (ls, lt, λ

′, φ′) ∈ Tm



Algorithm 1 Clock Reduction Algorithm
Require: A TA A = (L, l0, C, I, T ).
Ensure: A TA Am = (L, l0, Cm, Im, Tm).

1: As ← Ar . initilization for iterative split, Ar is the TA
obtained by iteratively removing all unnecessary resets.

2: for each x ∈ C do
3: As,x is obtained after applying Def. 9 to As for x.
4: Ds,x is the dependency relation of As,x (Def. 7).
5: if π′C(x)× π′C(x) ∩ Ds,x = ∅ then As = As,x

6: end for
7: Ds is the dependency relation of As (Def. 7).
8: {C1, C2, . . . , Cn} = GraphColoring(Cs,Ds) . the

minimum partition of Cs found by graph coloring.
9: Am ← As . initilization for iterative merge.

10: for each Ci ∈ {C1, C2, . . . , Cn} do
11: Am ← A xi←Ci

m for some xi ∈ Ci
12: end for
13: Tm ← {Tm \ {t0}} ∪ {(l̃, l0, Cm, T rue)}

and |T | = |Tm|. Hence, the underlying graph structure of
A is preserved in Am. Similarly, all applied transformations
preserves the constraint constants by definition; thus set of
constants appearing on the invariants and the constraints of
transitions are the same in both A and Am. Since in the
splitting part, we do not split any clock that creates pseudo-
dependencies between the new splitted clocks, i.e., we do not
split any clock that cannot be merged into one in the later
merging phase, the solution ensures that |Cm| ≤ |C|. Finally,
Am ≈ A holds by Thm. 3 which completes the proof.
Complexity of Alg. 1 The redundancy check operation for a
reset, split and merge operations can be done via a depth first
search, thus have complexity O(|L| + |T |). Therefore, these
run in time O((|L|+|T |)|C|). However, the scope computation
for a clock requires enumerating all simple paths between two
locations, which is exponential in |L| . The complexity of
the graph coloring problem is exponential in the number of
vertices of Ds, that is r×c, where c = max{|controls(x)|x ∈
C}, r = max{|resets(x)|x ∈ C} due to the split operation.

Fig. 9. The TA Am = (L, l0, Cm, Im, Tm) obtained after applying the
solution to the TA in Fig. 1.
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Example 8: For the given TA in Fig. 1, the TA obtained
after applying proposed the solution is given in Fig. 9.

IV. EMPIRICAL EVALUATION

This section answers the following questions by an empir-
ical evaluation of a case study: (i) To what extend does the

proposed solution reduce the number of clocks, and (ii) how
does the runtime of the algorithm suffer from the complexity?

We implemented the proposed solution as a simple Python
program. The program uses NetworkX [20], a well-known
Python package for graph operations. For generating random
TA as test cases, we fixed two graph structures (an acyclic and
a cyclic graph). The first graph structure we used for testing is
our running example from Fig.1 (named ExpAcyc) and the
second one is a cyclic graph with ten nodes (i.e., locations)
where locations are indexed from 1 to 10 with the following
layout: each ith location is connected to (i + 1)th location
(except for i = 10, it is connected to 1) and additionally
we have the following three transitions (chosen randomly to
make the graph more complex) (6, 1), (8, 2), and (3, 9) (named
ExpCyc). In both of the experiments, we varied number of
clocks from two to ten. For each clock, at most four resets and
four constraints are randomly placed in the graph. Experiments
are performed on a hardware with an Intel Core i5 processor
clocked at 2.3 GHz and a 16 GB main memory.

In Tab. I, we report the results of the experiments. In both
experiments, for each clock count, we generated 1000 random
samples and applied the proposed algorithm. The initial clock
count is given in the first column, average clock count of all
samples after applying Alg. 1 is given in the second column
for ExpAcyc and fourth column for ExpCyc, and the average
runtime of the solution in milliseconds is given in the third
column for ExpAcyc and fifth column for ExpCyc.

TABLE I
EXPERIMENT RESULTS

Initial ExpAcyc ExpAcyc ExpCyc ExpCyc
Clock Count Result Runtime (ms) Result Runtime (ms)

2 1.549 0.916 1.872 2.091
3 1.964 1.787 2.692 3.978
4 2.348 2.947 3.467 6.459
5 2.676 4.359 4.187 10.165
6 3.015 5.953 4.879 14.064
7 3.261 8.059 5.593 19.133
8 3.476 10.091 6.246 24.993
9 3.871 12.972 6.782 32.226
10 4.115 17.837 7.457 38.383

Given results of the empirical evaluation shows that (i) as
the number of clocks in the model increases, the proposed
solution continues to reduce number of clocks in the TA;
hence, it gives promising results for the applicational concerns,
and (ii) even for considerably large clock counts, the average
runtime of the algorithm is under one second which shows that
although, the proposed solution has exponential complexity, it
is still applicable to practical areas.

V. COMPARISON WITH RELATED WORK

In [13], Daws and Yovine proposed an algorithm for reduc-
ing the number of clocks of a TA by combining two methods.
The first one is based on detecting the active set of clocks in a
location and locally renaming them to obtain a timed bisimilar
TA. The second one is based on detecting equal clocks and
deleting redundant ones. Due to the local renaming approach,
their solution does not always yield to the minimum number of



clocks. Moreover, they consider a variation of traditional TA,
where assigning clocks to each other is allowed; however, in
this work, clocks can only be reset to zero as in the traditional
TA. This nuance has a significant effect on the solution.

In [14], Guha et al. proposed an algorithm for finding a
new TA that is timed bisimilar to the original one with the
minimum number of clocks. While their solution generates
the TA with minimal number of clocks, it can substantially
increase the number of locations and transitions, i.e. they
significantly change the design parameters of the original
TA. Consequently, in some cases, their solution may result
into a slower verification time as it increases number of
locations and transitions [1], [2] while they sacrifice from the
understandability of the model at the same time. Moreover,
their solution has 2-EXPTIME computational complexity.

In [15], Saeedloei et al. proposed an algorithm for reducing
the number of clocks of a TA without changing the underlying
graph. Their solution is based on renaming the clocks. They
do liveliness analysis for clocks and use graph coloring for
reducing number of clocks. Due to the graph coloring, their
solution has exponential complexity on the number of clocks
except a sub-class of TA. Below, we present the differences
between [15] and our solution.
Liveness analysis: We define the scope of a clock as the set
of all paths in between the target location of a reset and the
source location of its corresponding constraint, i.e., we do not
include the transition on which a clock is reset. In [15], they
include reset transitions to their range definition, which can
cause redundant dependencies, since a clock can be tested and
reset on the same transition. During the execution of such
transition, first the constraint is checked, then if the constraint
is satisfied, the clocks are reset. Due to this nuance in our
definition, we are able to avoid such redundant dependencies:
hence, our solution further reduces the number of clocks.
Graph coloring: Applying graph coloring to clock minimiza-
tion problem has been first introduced in [14], then used in
[15] with a different approach. We apply graph coloring in
a similar way to [15] since the intuitions behind both of the
solutions root from identifying the independent clocks that can
be merged, which trivially maps to the graph coloring problem.
Splitting: In [15], splitting has been addressed as a problem
which cannot be handled by their solution. We formally define
the splitting and use it to manipulate TA to avoid redundant
dependencies. We consider the formal definition of splitting
by preserving bisimulation property as a contribution, since it
was just vaguely mentioned as a problematic concept in [15].
Optimality: The reduction algorithm of [15] generates the
TA with minimal number of clocks for the class of TA with
the following restrictive properties: (i) at most one clock can
be reset on a transition and (ii) if a clock is reset on a
transition leaving a location l, then it must be reset on every
transition leaving l. Note that for this class of TA, our solution
also generates the minimal number of clocks. Essentially, the
number of clocks generated by our solution is upper bounded
by [15], since we improve it in two directions: splitting and a
more precise scope definition. For our running example, [15]

reduces the clock count to 3, whereas we reduce it to 2. As
another example, our method reduces the clock count of TA
shown in Fig. 4 of [15] to 2, whereas they reduced it to 3. Note
that our example violates property (ii), and the example from
[15] violates property (i). Hence, neither of them belongs to
the restricted class considered in [15] for the minimality claim.
In particular, we have a stronger minimality claim.

VI. CONCLUSION

In this paper, we aimed at reducing number of clocks of
a TA without changing the underlying graph structure and
the design parameters of the modeled system. We developed
a novel solution to this problem that it applicable to whole
class of TA. First, we presented precise concepts for analyzing
relations between clocks and demonstrated how these concepts
can be used to reduce number of clocks in a TA. Then, we
formalized the splitting operation that is a crucial phase of
the solution for further reducing number of clocks in a TA.
Finally, we presented a promising empirical evaluation of the
algorithm to show its applicability and runtime performance.
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APPENDIX

Proof of Thm. 1: We will prove the bisimulation properties
P1 and P2 from Def. 3 for R for both time elapse and location
change transitions. Consider any((l, ν), (l, ν′)) ∈ R.

Time elapse, Proof of P1: Assume that (l, ν)
δ−→ (l, ν+ δ).

To prove P1 , we will show that ((l, ν + δ), (l, ν′ + δ)) ∈ R
and (l, ν′)

δ−→′ (l, ν′ + δ) holds. By construction of T (A ),
(l, ν)

δ−→ (l, ν + δ) implies that I(l) holds true for ν + δ′ for
each δ′ ∈ [0, δ]. By property MP (16), I ′(l) holds true for
ν′+ δ′ for each δ′ ∈ [0, δ]. Consequently, (l, ν′+ δ) ∈ Q′ and
(l, ν′)

δ−→′ (l, ν′+ δ), and by (12), ((l, ν+ δ), (l, ν′+ δ)) ∈ R,
which completes the proof of P1 for time elapse transitions.

Time elapse, Proof of P2: Now, assume that (l, ν′)
δ−→′

(l, ν′+ δ). To prove P2, we will show that ((l, ν+ δ), (l, ν′+

δ)) ∈ R and (l, ν)
δ−→ (l, ν + δ) holds. By construction of

T (A x←y), (l, ν′)
δ−→′ (l, ν′ + δ) implies that I ′(l) holds true

for ν′ + δ′ for each δ′ ∈ [0, δ]. Then, by property MP (16),
I(l) holds true for ν + δ′ for each δ′ ∈ [0, δ]. Consequently,
(l, ν + δ) ∈ Q, and (l, ν)

δ−→ (l, ν + δ), and by (12), ((l, ν +
δ), (l, ν′+ δ)) ∈ R, which completes the proof of P2 for time
elapse transitions.

Location change, Proof of P1: Assume that (l, ν) →
(lt, νt). To prove P1, we will show that ((lt, νt), (lt, ν

′
t)) ∈ R,

where

ν′t(z) =

{
νt(z) ∀z ∈ C \ {x, y}
M(lt, (νt(x), νt(y))) z ∈ {x}

(26)

and (l, ν′)→′ (lt, ν
′
t) holds.

By assumption (lt, νt) ∈ Q, which implies that I(lt) holds
true for νt. Then, by property MP (16), I ′(lt) holds true for ν′t.
Therefore, (lt, ν

′
t) ∈ Q′, and by (12), ((lt, νt), (lt, ν

′
t)) ∈ R.

If (l, ν) → (lt, νt), then there exists (l, lt, λ, φ) ∈ T such
that φ holds true for ν and νt = ν[λ := 0]. Then, by property
MP (16), µΦ(φ, x, y) holds true for ν′. By construction of
A x←y (see Def. 4),

(l, lt, µC(λ, x, y), µΦ(φ, x, y)) ∈ T ′

To complete the proof of P1 for location change transitions,
it is sufficient to show that

ν′t = ν′[µC(λ, x, y) := 0] (27)

Since (l, ν′) →′ (lt, ν
′
t) holds via transition

(l, lt, µC(λ, x, y), µΦ(φ, x, y)) and (27). We prove (27)

for each clock z ∈ C \ {y} by considering the following five
cases:

c1 z ∈ C\({x, y}∪λ): By (26), ν′t(z) = νt(z). Since z 6∈ λ,
νt(z) = ν(z). By (12), for z 6∈ {x, y}, ν(z) = ν′(z). Finally,
by (3) µC(λ, x, y) ⊆ λ ∪ {x}. Consequently, z 6∈ µC(λ, x, y)
and ν′t(z) = ν′(z).

c2 z ∈ λ \ {x, y}: By (26), ν′t(z) = νt(z). z ∈ λ implies
that νt(z) = 0. As z ∈ µC(λ, x, y) by (3), ν′t(z) = 0 and the
equality holds.

c3 z ∈ {x} ⊆ λ (i.e. z is x): By (3), x ∈ µC(λ, x, y).
Therefore, ν′t(x) = 0 and (27) holds.

c4 z ∈ {x}, x 6∈ λ and x 6∈ µC(λ, x, y): Since x 6∈ λ,
νt(x) = ν(x). By definition (26), ν′(x) = M(l, (ν(x), ν(y))).
By (15), for each of the following cases a-d, M(l, (a, b)) =
M(lt, (a, b)) for any a, b (M chooses the same clock in both
locations):

a: l, lt ∈ Lx ∩ Ly,b: l, lt ∈ Lx \ Ly, c: l, lt ∈ Ly \ Lx,
d: l, lt ∈ L \ {Lx ∪ Ly}

Therefore, in these cases (27) holds as x 6∈ µC(λ, x, y) and
ν′t(x) = ν′(x). Now consider

e. l ∈ Lx\Ly and lt ∈ Ly\Lx f. l ∈ Ly\Lx and lt ∈ Lx\Ly

Condition e. implies that l is in the scope of x and lt is in the
scope of y. (l, lt, λ, φ) ∈ T , therefore controls(y) is reachable
from l. Consequently, it is reachable from a location where x
was reset (as unnecessary resets are removed via (8)). Then,
x and y is reset on the same transition, ν̄(x) = ν̄(y) for any
(l, ν̄) ∈ Q, hence (27) holds. Otherwise, x is reset in the scope
of y, which contradicts with the independence assumption that
(x, y) 6∈ D. The same argument applies to case f.. Observing
that cases a-f cover all possibilities completes the proof.

c5 z ∈ {x}, x 6∈ λ and x ∈ µC(λ, x, y): In this case, y ∈ λ
and it is replaced with x by µC . As unnecessary resets are
removed via (8), lt ∈ Ly , M(l, (νt(x), νt(y)) is νt(y), which
is 0, and ν′t(x) = 0.

It was shown that (27) always holds. Therefore, (l, ν′) →′
(lt, ν

′
t), which completes the proof for P1 for location change

transitions.
Location change, Proof of P2: Assume that (l, ν′) →′

(lt, ν
′
t). To prove P2, we will show that there exists (lt, νt) ∈

Q such that (l, ν) → (lt, νt) and ((lt, νt), (lt, ν
′
t)) ∈ R. By

construction of T (A x←y), there exists (l, lt, λ
′, φ′) ∈ T ′ such

that φ′ holds true at ν′ and ν′t = ν′[λ′ := 0]. By Defn. 4, there
exists (l, lt, λ, φ) ∈ T such that λ′ = µC(λ, x, y) and φ′ =
µΦ(φ, x, y). By property MP (16), φ holds true for ν. Let νt
be defined as νt = ν[λ := 0]. Hence, it holds that (lt, νt) ∈ Q
and (l, ν) → (lt, νt). Considering the cases presented in the
proof of location change transitions for P1, it follows that
((lt, νt), (lt, ν

′
t)) ∈ R, which completes the proof for location

change transitions for P2.
Note that q0 = (l0, ν0), ν0(z) = 0∀z ∈ C, q′0 = (l0, ν

′
0),

ν0(z) = 0∀z ∈ C \ {y} and ((l0, ν0), (l0, ν
′
0)) ∈ R. Hence,

R ∈ Q ×Q′ is a timed bisimulation relation and A x←y and
A are timed bisimilar.


