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Abstract. We present a framework for the compositional simulation-
based analysis of AI-based autonomous systems for Markovian safety
specifications. Our compositional approach allows us to cut down the
cost of executing a large number of long-running simulations, by decom-
posing a simulation-based analysis task into several shorter and more
efficient ones. Results obtained from the individual analyses are then
stitched together to generate a result for the overall simulation-based
task. Our approach is based on a decomposition of scenarios formalized
as concurrent hierarchical probabilistic extended state machines that
describe sequential and parallel compositions of scenarios. We present
two instantiations of our framework for falsification and statistical ver-
ification. Using case studies from the autonomous driving domain, we
demonstrate the scalability of our compositional approach in compari-
son to a monolithic analysis approach.

Keywords: Simulation-based analysis · AI-based autonomous
systems · Compositional scenarios

1 Introduction

Artificial intelligence (AI) and machine learning (ML) are starting to be used
more widely in autonomous systems, in tasks that span perception, prediction,
planning, and control. However, there is a growing concern about how to assure
the safety of systems that use AI/ML-based components. Formal methods can
play a key role in assuring the safety of AI systems [23]. However, due to the
high complexity of these components, verification and testing methods must
often handle them as black-box components rather than using classic model-
based approaches. Simulation-based formal analysis has become commonplace
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for assessing the correctness of AI-based autonomous systems. The correctness
of the system is evaluated against a specification, defining the safety conditions,
by searching through its behaviors in a number of simulations.

Obtaining meaningful and high-confidence verification results requires the
execution of a large number of long-running simulations, which remains an inten-
sive and costly process. This is a consequence of the high dimensionality of the
simulation feature spaces induced by the complex environments in which the
systems are executed. In many cases, however, simulation models, also called
scenarios, are composed of several smaller scenarios in which a system is tested.
For a better and more efficient simulation-based analysis process, we need to take
advantage of this composition, transforming a large monolithic analysis process
into several easier analysis tasks.

In this paper, we present a compositional approach to simulation-based anal-
ysis of autonomous systems. Our approach is based on a decomposition of sce-
narios where sub-scenarios can be either composed sequentially, representing
the different stages of the simulation, or in parallel, representing different pos-
sibilities for a stage of the simulation. In this way, a simulation-based analysis
problem is decomposed into several smaller problems, each on the sub-scenario
level. Results obtained from each sub-analysis problem are stitched together to
form a result for the bigger problem. Our framework assumes that the specifica-
tions are Markovian (memoryless). In practice, most specifications encountered
in AI-based autonomous systems are Markovian, e.g., the absence of collisions,
obeying traffic lights, keeping a safe distance between agents.

We present a formalization of compositional scenarios based on concurrent
hierarchical probabilistic extended state machines, where each of the states of
a machine represents one of the sub-scenarios. A scenario is defined in terms of
a Markov decision process, representing the agents’ behavior and distributions
over the feature space of the environment model that the scenario represents.
Based on this formalization, we present a framework that can be instantiated
to a compositional algorithm for simulation-based analysis tasks of Markovian
safety specifications provided there is an aggregation function that allows us to
correctly stitch together the individual result to a global one. In general, it is
not straightforward to do compositional statistical analysis when the interface
specifications are not given. Our formalization and framework define a systematic
way to solve this problem via constructing the interface specifications on the fly
by computing the post-conditions of the sub-scenarios in each iteration.

We show how we can use our framework to define compositional algorithms
for the tasks of falsification and statistical model checking. We evaluate our
approach by applying the instantiated algorithms for these problems on bench-
marks from the domain of autonomous driving. Our results show that using the
compositional algorithms results in a speed up in solving the tasks in compari-
son to a monolithic approach. In particular, for falsification, the compositional
algorithm improves by more than 50% over the monolithic approach in terms
of the number of simulation steps needed to find a falsifying example. For sta-
tistical verification, in one case study, our approach outperforms the monolithic
one using, on average, only half the number of simulation steps. In another case
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study, the compositional approach converges after a small number of steps, while
the monolithic one exceeds a timeout threshold of 100 simulation runs.

To summarize, our main contributions are: (i) a formalization of composi-
tional scenarios based on concurrent hierarchical probabilistic extended state
machines and Markov-decision processes, (ii) a generic framework for the com-
positional analysis of AI-based autonomous systems, and (iii) experimental eval-
uation on two instantiations of the framework for falsification and statistical
verification, showing its efficacy and scalability in comparison to monolithic
simulation-based analysis methods.

Fig. 1. A snippet of a compositional scenario where individual sub-scenarios are defined
using a Scenic program.

2 Motivating Example

Consider an autonomous driving task with two cars, Leader and Follower,
where the former drives around the city and, at an intersection, turns left, right,
or goes straight uniformly at random, and the latter follows Leader while keeping
a safe distance. We analyze this system using the compositional scenario given
in Fig. 1. The individual scenarios are defined using Scenic [11], a probabilistic
scenario-description language, which we will use in our experiments as a way
to define scenarios.1 The program defines a monolithic scenario scenario com-
posed of four sub-scenarios, subScenario1, subScenario2L, subScenario2S,
and subScenario2R. The scenario begins with the sub-scenario subScenario1,
then composes it sequentially with a uniform choice among subScenario2L,
subScenario2S, and subScenario2R to simulate the system in a turn left, go
straight, or turn right sub-scenario at an intersection.

subScenario1 creates the cars, Leader and Follower, where Follower is
defined as the ego vehicle. Then, it defines a distribution over possible initial
position and orientation values for both cars. subScenario2L creates a box (an
obstacle) after the left turn and defines position and color distributions for it.
Similarly, subScenario2S and subScenario2R do the same for their own cases.
1 For the full syntax of Scenic, see [11].
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Assume that the controllers of the two cars are equipped with AI-based com-
ponents for lane keeping and car following. Our goal is to analyze the system
composed of the two cars against a system-level specification that requires the
two cars to remain within a safe distance from each other that is not larger than
15 m and not smaller than 5. The analysis can be done in two ways, using fal-
sification [8], capturing cases where the specification is violated, and statistical
verification [16], providing statistical guarantees on to what extent the system
satisfies the specification. The falsification process searches for counterexamples
by simulating the system and sampling initial conditions and actions for the envi-
ronment. On the other hand, the statistical verification process aims to gather
an adequate number of executions of the system in its environment to provide a
statistical guarantee for the correctness of the system.

The traditional approach to simulation-based analysis samples initial con-
ditions for the environment and rolls out its entire trajectory. For the sce-
nario in Fig. 1, this translates to interpreting it monolithically, i.e., running
scenario. Simulating a system using scenario implies that, for each simu-
lation, Scenic samples a sub-scenario among subScenario2L, subScenario2S,
and subScenario2R, composes it with the initial sub-scenario subScenario1,
and samples conditions for the environment from this composition. Then, we run
the simulation with the sampled conditions and continue simulating the system
in this way until a termination condition is satisfied. However, this monolithic
approach does not exploit the inherent compositional structure of the program.
Therefore, it suffers from long simulation runs, requires a large number of execu-
tions for statistical guarantees, and does not always provide information about
the intermediate behaviors of the system during its execution.

In this paper, we propose to leverage the compositional structure. Our
method uses the Scenic program in Fig. 1 at the sub-scenario level. Specifically,
both for falsification and statistical verification, we first simulate the system
using subScenario1 until the cars arrive at the intersection and save the post-
condition resulting from this execution. We simulate the system in this manner
until the saved post-conditions converge to a stable distribution. We refer to this
distribution as the output distribution of subScenario1. We then use this output
distribution to analyze subScenario2L, subScenario2S, and subScenario2R by
sampling initial conditions for these sub-scenarios. Observe that this approach
is inherently more efficient than the monolithic approach as it divides the over-
all analysis task into smaller ones and solves them in isolation while avoiding
redundant computation: e.g., we analyze subScenario1 only once and reuse its
output distribution for the other three sub-scenarios.

3 Preliminaries

3.1 Executions and Specifications

Let S be a system defined over a set of system variables V over the domain of
real numbers R. Let �V � denote the set of valuations of V . An execution of a
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system is a sequence σ of valuations of the variables V , i.e., σ ∈ �V �∗, where for
some alphabet Σ, the set Σ∗ defines the set of all finite words over Σ.

For a set of system variables V , we define a specification as a set ϕ ⊆ �V �∗.
A specification thus defines a valid set of executions. In our work, we are partic-
ularly interested in Markovian safety specifications, also known as memoryless
safety specifications, whose satisfaction on an execution can be determined based
on the current valuation of system variables independent of the valuations of the
variables in previous steps of the execution. Formally, a Markovian safety speci-
fication ϕ can be defined in terms of a set ϕ′ ⊆ �V � such that for every execution
σ = σ1 . . . σm ∈ �V �∗ for any m ∈ N

+, σ ∈ ϕ if and only if for all i ≤ m, it
holds that σi ∈ ϕ′. In the rest of the paper, a specification will always refer to a
Markovian safety specification.

3.2 Markov Decision Processes

For a countable set X, let Distr(X ) ⊂ (X → [0, 1]) define the set of all dis-
tributions over X, i.e., for d ∈ Distr(X ) it holds that Σx∈Xd(x) = 1. For
d ∈ Distr(X ), let the support of d be defined by Supp(d) = {x | d(x) > 0}.
A Markov Decision Process (MDP) is a tuple M = (Q,Act ,P, ι,X, L) where
Q is a set of states, Act is a finite set of actions, P : Q × Act → Distr(Q)
is the transition probability function such that

∑
q′∈Q P(q, a)(q′) ∈ {0, 1} for

every q ∈ Q and a ∈ Act , ι ∈ Distr(Q) is the initial distribution such that∑
q∈Q ι(q) = 1, X is a finite set of variables and L : S → �X� is a labeling

function that assigns each state a valuation of the variables in X. For a state
q ∈ Q, we define AvAct(q) = {a | P(q, a) �= ⊥}, where ⊥ is the empty dis-
tribution. W.l.o.g., |AvAct(q)| ≥ 1. If |AvAct(q)| = 1 for all q ∈ Q, we refer
to M as a Markov chain (MC). A finite path in the MDP M is a sequence
π = q0a0q1 . . . qn ∈ Q × (

Act × Q
)∗ such that for every 0 ≤ i < n it holds that

P(qi, ai)(qi+1) > 0 and ι(q0) > 0. We denote the set of finite paths of M by ΠM .
We use π↓ to denote the last state in π. A policy for the MDP M is a function
σ : ΠM → Distr(Act) with Supp(σ(π)) ⊆ AvAct(π↓) for every π ∈ ΠM . A policy
σ of M induces a Markov chain �M�σ. We denote the set of policies of M by
Policies(M).

4 Compositional Scenarios

A scenario represents a model of an environment in which we want to deploy
and analyze a system. This model is defined as a distribution over spatial and
temporal configurations of the environment, including those of all objects and
agents. The underlying semantics of a scenario can therefore be defined by an
MDP, where the nondeterministic actions capture the nondeterministic behavior
of the agents and simulator, and the probabilistic behavior reflects the distri-
butions over the feature space and probabilistic actions of agents. For example,
each of the Scenic sub-scenarios in Fig. 1, defines an MDP. A compositional sce-
nario is a collection of scenarios that are composed sequentially and in parallel.
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A compositional scenario is therefore best modeled as a concurrent hierarchical
probabilistic extended state machine (CHPESM). Concurrent, because scenar-
ios can be executed concurrently; hierarchical, because a compositional scenario
can be composed of other compositional scenarios; probabilistic because switch-
ing to the next scenario can be done probabilisticly and, also, at any time the
choice of attributes and actions is done based on an underlying probability dis-
tribution over valuations of the environment’s feature space. The semantics of a
compositional scenario is then defined by an infinite-state MDP. In the following
sections, we give an overview of the CHPESM model and show how the MDP
of a compositional scenario can be obtained by computing the flattening of its
CHPESM.

4.1 Concurrent Hierarchical Probabilistic Extended State Machines

We define a probabilistic extended state machine (PESM) as a tuple M =
(Q, ι, V, F, P ) where Q is a set of states, ι ∈ Distr(Q) is an initial distribu-
tion over states, V is a finite set of real-valued variables, F is a set of exit states,
and P : Q×G(V ) → Distr(Q) is a probabilistic transition relation, where G(V )
defines the set of boolean constraints of the form x ∼ c, so-called guards, for
x ∈ V and ∼∈ {<,≤,=, >,≥}. Given a state and a guard, P returns a distri-
bution over states. A transition (q, g, d) ∈ P is enabled for a valuation v ∈ �V �
if and only if g(v) is true.

Hierarchical probabilistic extended state machines (HPESMs) are probabilis-
tic extended state machines whose states are themselves PESMs or HPESMs
[20,25]. Formally, HPESMs are defined inductively as follows. Let M be a set of
HPESMs over variables V . A HPESM H = (Q, ι, V, F, P,M, μ), where Q, ι, V, F
and P are a set of states, an initial distribution over states, a set of variables,
a set of exit states, and a probabilistic transition relation as in any probabilis-
tic extended state machine. Further, μ : Q → M is a mapping that associates
each state q ∈ Q with an HPESM from M. For example, in Fig. 1, scenario
is an HPESM with one state mapped to a PESM with states subScenario2L,
subScenario2S, and subScenario2R, and subScenario1.

An HPESM H provides a compact notation for a corresponding PESM,
denoted by flat(H) [25]. The machine flat(H) is defined inductively as follows.
If H is a PESM then flat(H) = H. If H is not a PESM, then flat(H) =
(Q′, ι′, V, F ′, P ′), defined as follows. Q′ =

⋃
q∈Q states(flat(μ(q))), with states(.)

being a function that returns the set of states of any PESM. For all q ∈ Q and
for all q′ ∈ states(flat(μ(q))), ι′(q′) = ι(q).init(flat(μ(q)))(q′) with init return-
ing the initial distribution of a state machine. P ′ = {τ = (q1, g, d) | ∃q ∈
Q. τ ∈ transitions(flat(q)) or ∃(q, g′, d′) ∈ P. q1 ∈ exit(flat(μ(q)))∧∀q′ ∈ Q.∀q2 ∈
states(flat(μ(q′))). d(q2) = d′(q′) · init(flat(μ(q′))) (q2)}, with transitions and exit
functions returning the transition relation and exit states.

A concurrent hierarchical probabilistic extended finite state machine
(CHPESM) [25] is defined inductively as follows. Every PESM is a CHPESM.
For the inductive step, we distinguish two cases: (1) a CHPESM C is either a
hierarchical composition of other CHPESMs, as previously defined for HPESMs,
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or (2) it is a parallel composition of CHPESMs, i.e., C = C1 ‖ · · · ‖ Cn for
CHPESMs C1, . . . , Cn.

Every CHPESM C is associated with a corresponding PESM defined again
inductively as follows. If C is a basic PESM, then flat(C) = C. If C is a
hierarchical composition then flat(C) is defined as in the case of HPESMs.
If C = C1 ‖ · · · ‖ Cn for CHPESMs C1, . . . Cn over a set of variables V ,
then flat(C) = (Q, ι, V, F, P ) where Q = states(flat(C1)) × . . . states(flat(Cn)),
ι = init(flat(Cn)) · · · · · init(flat(Cn))), F = exit(flat(Cn)) × · · · × exit(flat(Cn)),
and P a probabilistic transition relation where ((q1, . . . , qn),

∧
i≤n gi, d) ∈ P iff

there is a transition (qi, gi, d
′
i) ∈ transitions(flat(Ci)) for some i ∈ {1, . . . , n} and

where d((q′
1, . . . , q

′
n)) = Πj s.t. qj �=q′

j
dj(q′

j). We note that we choose a product
based on self-composition, i.e., transitions represent the execution actions from
different CHPESMs that can execute in parallel, in contrast to the usual syn-
chronous product used in [25]. This is necessary as individual processes in our
setting may evolve at their own pace.

4.2 Abstract Syntax and Semantics of Compositional Scenarios

Let S be a set of compositional scenarios. A compositional scenario is abstractly
defined as a CHPESM P = (S, ι, V, F, T,S, μ). Each state s ∈ S represents
a compositional scenario from S. Each of the basic (i.e., non-decomposable)
scenarios s ∈ S is defined over the feature space V .

The semantics of a compositional scenario P is defined by a (infinite-state)
Markov decision process �P� = (Q,Act ,P, ι,X, L) , obtained by first computing
the flattening of the CHPESM and then refining the states of the resulting PESM
to the MDPs they represent. A concrete scenario of P is a pair (v, π) for some v ∈
�V � and π ∈ Policies(�P�), inducing a Markov chain �P�v,π = (Q,P′, ι′,X, L)
where ι′(q) = 1 if q = (v,−) and ι(q) > 0. For any other q′ ∈ Q \ {q}, ι′(q′) = 0.
An execution of P is a path of a Markov chain �P�v,π obtained for an initial
sampled valuation v ∈ �V � and a policy π ∈ Policies(�P�).

5 Compositional Simulation-Based Analysis

In this section, we present a generic compositional simulation-based analysis
framework that can be instantiated to concrete algorithms for solving specific
simulation-based analysis tasks. The framework assumes a compositional sce-
nario structure, given by a CHPESM. Working on the PESM defining the flat-
tening of the CHPESM, the algorithm decomposes a general simulation-based
analysis task into smaller tasks, one for each state of the PESM, thus, executing
analysis tasks on the sub-scenario level. Results obtained from the individual
simulation-based analyses are stitched together providing a result for the over-
all analysis task. We first introduce the generic framework and then show two
instantiations of the algorithm for falsification and statistical verification.
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5.1 Generic Framework

We introduce a generic compositional simulation-based analysis framework in
Algorithm 1. An instantiation of the framework is an algorithm that operates on
an PESM M = (S, ι, V, F, P ), defining a flattening of a compositional scenario.
Such an instantiation is obtained by implementing three key procedures: evalu-
ate, terminate, and finalize. The algorithm then iterates over all sub-scenarios
defined by the states of M , starting with an initial state that is in the support
of ι and following the transition relation P . For each sub-scenario, an algorithm
executes a simulation-based analysis task implemented by the procedure evalu-
ate. This process is repeated until a termination condition is satisfied, checked
by the procedure terminate. Termination is decided based on the change in the
outcomes of the evaluation processes at each sub-scenario. If the termination
condition is satisfied, then the procedure finalize is called to compute a final
result. This result is computed by stitching together the results computed by
the evaluation process for the sub-scenario. If the termination condition is not
satisfied, the algorithm continues by evaluating other sub-scenarios. In the fol-
lowing, we elaborate on the workflow of the framework by providing more details
on the functionalities of procedures evaluate, terminate, and finalize.

Evaluation. An instantiation of our compositional approach executes
simulation-based analysis tasks at the sub-scenario level starting with states from
the initial distribution ι (line 2). The set W represents a working set including
all sub-scenarios for which a task should be executed next. For each sub-scenario
s ∈ W (line 4), the procedure evaluate is invoked (line 5), which implements a
specific simulation-based analysis process for a given task of interest (e.g., falsifi-
cation, statistical verification, etc.). The evaluate procedure is provided with an
input distribution ds

in on the input sample space of s, and output distribution
ds

out on the output space of s, which is to be updated by the evaluation proce-
dure. We represent ds

in and ds
out as multisets, so the distributions are extended

by adding new elements to these multisets. Notice that other representations for
these distributions are also possible depending on the specific needs of the task
under consideration. Finally, while termination of evaluate may depend on the
simulation-based analysis task at hand, it can also be stopped after a simulation
budget c has been exhausted, i.e., a number of simulation steps c is reached as
a sum of steps taken over all simulation runs performed by evaluate. The bud-
get can also be unlimited, i.e., c = −. In this case, the termination of evaluate
solely depends on the termination condition of the analysis task given by the
underlying implementation of evaluate.
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Algorithm 1. Compositional Simulation-based Analysis
Input: .

Probabilistic state machine M = (S, ι, V, F, P ) /* Flattening of a CHPESM*/
Local simulation budget c ∈ N ∪ {−}

1: initialize({ds
in}s∈S , {ds

out}s∈S , r, {Ds
out}s∈S , R)

2: W := Supp(ι), W ′ := ∅
3: while True do
4: for s ∈ W do
5: ds

out, r(s) := evaluate(s, ds
out, ds

in, c)
6: R(s) := append(R(s), r(s))
7: Ds

out := append(Ds
out, ds

out)
8: if terminate({Ds

out}s∈S , R) then
9: return finalize(M, r)
10: for (s, g, d) ∈ P do
11: for s′ ∈ Supp(d) do
12: W ′ := W ′ ∪ {s′}
13: ds′

in := ds′
in + ds

out
14: if W ′ �= ∅ then
15: W := W ′

16: W ′ := ∅
17: else
18: W = Supp(ι)

The outcome of evaluate is a distribution ds
out on the outputs reached by the

simulation process of evaluate, and a result of the analysis process that updates
a mapping r for the specific sub-scenario s. For example, if evaluate implements
a falsification task for some specification ϕ, then r(s) is assigned to a valuation
v ∈ �V �, and a policy π ∈ Policies(s), that falsify ϕ. If evaluate implements a
statistical verification method, then r(s) stores an estimate of the probability
of satisfying a given specification in s. The history of results obtained for each
sub-scenario, as well as the history of output distributions are stored in a list of
mappings R, and a list of distributions Ds

out for each sub-scenario s ∈ S (lines 6
and 7). For this we assume that the input and output distributions ds

in, and ds
out,

the mapping r, as well as the lists Ds
out and R are initialized at the beginning

of the algorithm (line 1). These lists are necessary for checking termination and
are forwarded to the procedure terminate.

Termination. Termination of Algorithm 1 is checked after every evaluation
process, and is done executing an implementation of the procedure terminate
(line 8). Termination is decided based on the history of results stored in R,
and obtained using evaluate at each sub-scenario, as well as the history of out-
put distributions Ds

out for each sub-scenario s (collected in lines 7 and 6). For
example, in the case of falsification, terminate is implemented as the procedure
that returns True if a falsifying valuation is found at any sub-scenario s, or, if
such valuation is not found, then it might return True after observing a stabi-
lization in the output distribution computed for each sub-scenario. The latter
stabilization condition can also be used as a termination condition for statistical
verification (More details in the next sections). If terminate returns False, then
Algorithm 1 continues by applying the evaluate procedure on other scenarios in
the working set W that have not been processed so far. As long as termination
is not satisfied, after each evaluation process, a new working set of sub-scenarios
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is computed that will be processed in the next iteration of the algorithm (lines
10 - 13). Here, successor sub-scenarios s′ of a currently evaluated sub-scenario
s, following the transition relation P , are added to the new working set W ′.
Furthermore, the input distribution ds′

in of a state s′ is updated with the output
distribution ds

out of its predecessor s (line 13). Once all states in W have been
processed, and the algorithm has not terminated, the set W is replaced with the
set W ′ (line 15) and the evaluation process is repeated for the new working set.
In case no new sub-scenarios are added, i.e., we reached and processed all exist
scenarios F of M , and the termination condition has not been satisfied yet, the
evaluation is restarted by re-initializing the set W with the set of initial states
(line 18). When it finally comes to a termination of the algorithm, as a last step,
the procedure finalize computes a final result for the overall simulation-based
analysis task, using the results stored in r. We discuss some instantiations of the
finalize procedure next.

Finalization. If the termination condition defined by the procedure terminate
is satisfied, a last procedure finalize is applied on the PESM M and the computed
mapping r. Executing an implementation of finalize stitches the results stored
in r, which were obtained from evaluating each sub-scenario, to a general result
for the general simulation-based analysis task. For example, in the case of a
falsification task for a specification ϕ, finalize will return a valuation satisfying
the input distributions of one of initial scenarios s0 ∈ Supp(ι), and for which there
is policy that leads to falsifying ϕ at s0, or a later scenario, reachable via P from
s0. In the case of statistical verification, a satisfaction probability is computed by
computing the minimum/maximum reachability probability computed over all
probabilities and distributions computed for the sub-scenarios and with respect
to the transition relation of M .

In the rest of the paper we refer to Algorithm 1 as the procedure comp.
An instantiation of Algorithm 1, for an evaluation, termination, and finalization
procedures λev, λter, and λfin, respectively, is denoted by comp(λev, λter, λfin).

5.2 Compositional Simulation-Based Falsification

In falsification we are interested in finding an evaluation of the feature space
that falsifies a given property. Given a flattening of a compositional scenario
M = (S, ι, V, F, P ) and a system-level specification ϕ ⊆ �V �∗, find v ∈ �V �
and π ∈ Policies(�M�) such that �M�v,π �|= ϕ. In this section, we show how we
can define a compositional falsification approach by instantiating the procedures
evaluate, terminate, and finalize.

– evaluate: we instantiate evaluate with a procedure λϕ
ev that for a given sce-

nario s, an input distribution ds
in, output distribution ds

out, and a simulation
budget c, simulates s sampling initial inputs from the distribution ds

in, and
evaluates a simulation run based on a function λ : 2�V �∗ ×2�V �∗ → B, that for
a specification ϕ ⊆ �V �∗ and a set of simulation runs, returns True if and only
if a simulation run τ is a falsifying example for ϕ. i.e., τ �|= ϕ. Simulations
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are restarted as long as no falsifying example is found or until the simulation
budget is exhausted. If a falsifying examples is detected, the falsification pro-
cess returns the initial valuation of inputs sampled at that simulation and a
simulation trace.

– terminate: termination is implemented by λter returning True once a falsifying
example is found at any sub-scenario. If no such example is found, the process
terminates using the stabilization condition defined over the list of output
distributions.

– finalize: The finalization procedure is implemented by λfin that chooses an
initial valuation of the feature space and a path in M such that it leads to
a non-empty r in one of the scenarios reachable via the path if they exist,
otherwise it returns False.

Theorem 1. For a compositional scenario M , a specification ϕ, and a falsifi-
cation method λ, it is the case that comp(λϕ

ev, λter, λfin)(M, c) = λ(ϕ,M).

Proof (Sketch). The correctness of this instantiation follows from the fact that
once a sub-scenario has been falsified, then there is a valuation from its input dis-
tribution and a policy, inducing traces falsifying the specification. Since the input
distribution is the union of output distributions of predecessor sub-scenarios,
then we can find a valuation from the input distribution of that scenario and
a policy that lead to the violation. We can extend this argument to reach a
valuation from one of the initial sub-scenarios and build a policy that induces a
trace, violating the specification. �

5.3 Compositional Simulation-Based Statistical Verification

Statistical verification is a method that allows estimating the correctness of a
system for a given property by simulating the system for a number of runs and
using methods from the area of statistical theory to provide guarantees on the
correctness up to a statistical error [16]. We show that for a given statistical ver-
ification method, we can instantiate Algorithm 1 to an algorithm that performs
the statistical verification compositionally, preserving the guarantees obtained
by the statistical verification method.

Let M = (S, ι, V, F, P ) be the flattening of a compositional scenario, ϕ ⊆
�V �∗ a specification we are interested in verifying, and λ a statistical verification
procedure that for M and ϕ, estimates the probability of M satisfying ϕ up to a
statistical error. A compositional algorithm for solving the statistical verification
problem can be achieved by using the following implementations of evaluate,
terminate, and finalize.

– evaluate: we implement evaluate as a procedure λϕ
ev that applies λ at each

sub-scenario s ∈ S for the specification ϕ. Simulation runs created by λϕ
ev

start from the input distribution ds
in, using a simulation budget c.

– terminate: a termination procedure λter can be implemented in several ways
[16]. In general, the termination condition for a statistical verification pro-
cess λ can be applied also over the sequence of results and post-conditions
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computed by the individual statistical verification processes. One prominent
example that we will use in our experiments, is a stabilization condition based
on the convergence of the standard error of the mean of the simulation post-
conditions [13].

– finalize: The finalization procedure λfin computes a probability based on the
probabilities computed for each sub-scenario. It aggregates the probabilities
starting from the exit states to the initial states. Specifically, the probability
for a sub-scenario s, is computed as f(s,g,d)∈P

∑
s′∈S r(s′).d(s′) where f is an

aggregation over probabilities (e.g., max, min, etc.).

Theorem 2. For a compositional scenario M , a specification ϕ, and an sta-
tistical verification method λ, it is the case that comp(λϕ

ev, λter, λfin)(M, c) =
λ(ϕ,M).

Proof (Sketch). The correctness follows from the fact that the statistical verifi-
cation processes have been performed independently and based on independent
output distributions computed at each sub-scenario. The overall result is thus
statistically correct up to the same statistical error for each sub-scenario. �

6 Experimental Evaluation2

In this section, we present an experimental evaluation of the proposed method on
two case studies from the autonomous driving domain. We first provide a high-
level description of the autonomous driving tasks. Then, we present the details
of the simulator setup, the controller implementations, and the system-level
specification. We also explain the evaluation metrics and our baseline. Finally,
we present compositional scenarios used for evaluation, details of their feature
spaces, and the evaluation results.

6.1 An Autonomous Driving Task

The environment consists of several straight and curved road segments along
with two intersections and obstacles (see Fig. 2). We have two cars: Leader (the
black car) and Follower (the red car). They are tasked with following each other
while maintaining a safe distance. Leader follows the yellow line in the middle
of the road. At an intersection, it chooses to go left, straight, or right uniformly
at random. After an intersection, Leader continues to follow the yellow line all
while trying to avoid obstacles. Follower must follow the lead car while keeping
a safe distance.

We use the Webots, an open-source 3D robot simulator widely used in indus-
try, education, and research [17,24]. Both cars are modeled as a BMW X5
equipped with a camera facing the road. Using its camera input, Leader’s com-
puter vision component uses a standard image processing technique to estimate
the car’s angle to the yellow line. This estimate is then used as an input to a
2 Available at https://github.com/BerkeleyLearnVerify/compositional-analysis.

https://github.com/BerkeleyLearnVerify/compositional-analysis
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Fig. 2. Snapshots of the sub-scenarios of both case studies.

PID controller which controls the steering. Follower estimates its angle to the
Leader by processing its camera inputs in a similar way, and it also performs
image segmentation for estimating the distance to Leader. Additionally, Leader
uses a Sick LMS 291 LiDAR sensor for collision avoidance. Both cars set a target
speed of 40 km/h, but Follower changes its speed by braking or speeding up
to maintain a safe distance from Leader. The system-level specification formal-
izes the safe and specified distance between the cars with the Metric Temporal
Logic (MTL) [14] property � (distance ≥ 5 ∧ distance ≤ 15), where distance
denotes the distance between the cars. Specifically, the property defines the
notion of safety as keeping a distance between the cars that is not less than 5 m
and not more than 15 m throughout the entire trajectory.

6.2 Evaluation Details

We evaluate our method by performing both compositional falsification and com-
positional statistical verification on two different compositional scenarios for the
presented task. In compositional falsification, terminate (see line 8 in Algorithm
1) is designed to terminate the counter-example search either as soon as a fal-
sifying example is found or until the output distributions of each sub-scenario
stabilizes (the notion of stabilization will be defined precisely). In compositional
statistical verification, the terminate method halts the process once the out-
put distribution of each sub-scenario stabilizes. The notion of stabilization for
each sub-scenario’s output distribution is defined by the convergence of the stan-
dard error of the mean (SEM) of the simulation post-conditions. Specifically, at
the end of each sub-scenario, we get a point in a 6D space consisting of the
x-y coordinates and the orientations of both Leader and Follower. The post-
conditions of sub-scenarios form a distribution, which we try to approximate
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through simulations. We stop generating more samples for a sub-scenario once
the change in the SEM of the post-conditions drops down a threshold value Δ,
i.e., the SEM converges to a stable value. The SEM σμ̄ is defined as σμ̄ = σ̄√

n
,

where σ̄ =
√

1
n−1

∑n
i=1 (xi − μ̄)2 is the unbiased estimator of standard devia-

tion, {x1, x2 . . . , xn} is the set of n samples, and μ̄ is the sample mean. The
stability of the SEM can be used as an indicator of a robust and reliable esti-
mate of the population mean [13]. One can also calculate confidence intervals
for the true population mean using SEM, e.g., a 95% confidence interval can be
calculated as μ̄ ± 1.96 × σμ̄.

A nuance between the theory and the practical implementation of the pro-
posed method is that for compositional falsification, to find counter-examples
earlier, we implement our method in batched mode. Specifically, given a batch
size, we run each sub-scenario in batches and interleave the falsification process
of each sub-scenario until either all sub-scenarios satisfy their convergence con-
dition or a counter-example is found. This way we avoid redundantly waiting
for the convergence of the output distributions of sub-scenarios that cannot be
falsified to find counter-examples faster.

In our evaluation, we use two different sampling strategies, uniform sampling
and Halton sampling [12], for both compositional falsification and compositional
statistical verification. We leverage VerifAI [8,9], a toolkit for the formal design
and analysis of AI/ML systems, to sample scenes from Scenic programs accord-
ing to uniform and Halton sampling. These sampling strategies are used by the
evaluate method (see line 5 of Algorithm 1) for sampling initial conditions to
simulate trajectories. Observe that both uniform and Halton sampling are pas-
sive sampling strategies. The usage of passive sampling strategies provides a
simpler implementation for the batched execution of compositional falsification
since we initialize a new sampler for each batch. One can use active sampling
strategies like cross-entropy, simulated annealing, Bayesian optimization, etc. by
saving the sampler state so that the sampler state would be preserved between
the interleavings of different falsification processes. Another way to use active
samplers is to run the falsification process of each sub-scenario either concur-
rently or in parallel instead of running them in batched mode. However, these
implementations are outside the scope of this work as they require diligent engi-
neering efforts.

Baseline. The baseline for our evaluation is the monolithic simulation-based
analysis approach that is currently supported by Scenic and VerifAI. Specifi-
cally, this approach treats the Scenic program as a black-box sampler and does
not leverage the compositional structure of the program. It samples initial condi-
tions for the entire scenario and rolls out the entire trajectory until the end. The
termination condition for the baseline is defined in a similar way to our method,
i.e., for statistical falsification, the search ends either when a counter-example
is found or when the output distribution of the entire Scenic program stabi-
lizes, and for statistical verification, we run simulations, again, until the output
distribution stabilizes.
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Metrics for Evaluation. To demonstrate the efficacy of our method compared
to the monolithic baseline, we focus on the total number of simulator steps and
the estimated specification satisfaction probability. For falsification, we analyze
the number of simulator steps taken until the falsification process ends. Due
to the inherent randomness of both statistical methods, we run the falsification
process with 10 different random seeds and analyze the mean and the standard
deviation of the number of simulator steps. For verification, we again focus on
the number of simulator steps taken until convergence, and, we compare the
estimated specification satisfaction probability of both methods.

6.3 Case Study 1

We use the compositional Scenic program from Fig. 1 to test this system
against the system-level specification. The program defines four sub-scenarios:
subScenario1, subScenario2L, subScenario2S, and subScenario2R.
subScenario1 is a sub-scenario starting at the straight road segment and ending
at the intersection (see Fig. 2a). This sub-scenario defines possible initial posi-
tions and orientations for both cars. Once subScenario1 is over, the next sub-
scenario is sampled uniformly at random from the other three. subScenario2L
defines the sub-scenario where Leader turns left (see Fig. 2b), subScenario2S
is the sub-scenario for going straight at the intersection (see Fig. 2c), and
subScenario2R is the case for turning right (see Fig. 2d). All sub-scenarios at
the intersection have an adversarial obstacle to trick the image processing and
segmentation performed by Follower. Specifically, they all sample positions and
colors for a box that can potentially cause Follower to violate the safety speci-
fication by mixing Leader with the obstacle. The space of possible positions for
the obstacle, in each sub-scenario, is defined to be either on the right-most or
the left-most lanes so that the yellow line and the inner lanes are not blocked for
Leader. However, if the Leader takes the turn too wide, it could still collide with
the obstacle, which would cause a specification violation. The color space for the
obstacle consists of nine different colors, only one of which can fool Follower. If
the obstacle is black and visible from Follower, it could corrupt the angle and
the distance estimates and therefore potentially cause a specification violation.
Notice that in our implementation, we manually decomposed sub-scenario defi-
nitions of the monolithic Scenic program since Scenic’s current Webots interface
does not allow the usage of sub-scenarios.

Falsification. To understand the performance gains of our method compared
to the monolithic baseline, we run both our method and the monolithic base-
line with 10 different random seeds. We run our method in batched mode with
a batch size of 5. Figure 3a presents the results of the experiments for both
uniform and Halton sampling strategies. Both methods find counter-examples
before converging to a stable distribution. However, the compositional method
finds counter-examples by taking fewer simulator steps on average. Moreover, the
standard deviation of the total number of simulator steps is much smaller com-
pared to the monolithic baseline. An important detail to note here is that when
we compare the sampling strategies, we see that Halton finds counter-examples
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earlier compared to the uniform sampling strategy. This result is aligned with
the intuition that Halton sampling provides a more uniform coverage compared
to uniform sampling which uses pseudorandom number generators.

Statistical Verification. For comparing the performances of both methods
for statistical verification, we run both until convergence, i.e., until their output
distributions stabilize w.r.t. to the stabilization metric given in Sect. 6.2. For this
experiment, we set the threshold for convergence to Δ = 0.001 and run both
methods until the change in their SEM values drops down to this threshold.
Figure 3b presents a comparison between the total number of simulator steps
taken by each method before converging to a stable output distribution. With
uniform sampling, the compositional method provides a 3.85× speed up, and
with Halton sampling, our method is 4.18× faster. Notice that with Halton
sampling, both methods take slightly more simulator steps compared to the
uniform sampling strategy. This is due to the fact that the coverage provided by
Halton sampling makes the convergence of the output distributions harder.

We also compare the estimated probabilities output by the methods. Table 1
presents these results for both sampling strategies. The probability for the com-
positional method is calculated by combining the results from sub-scenarios.
Since we sample among subScenario2L, subScenario2S, and subScenario2R
uniformly at random, their probabilities are averaged, and since subScenario1
precedes the other three, its estimated probability is multiplied by the calculated
average. Table 1 shows that both methods converge to similar specification sat-
isfaction probabilities with minor differences. However, the compositional app-
roach uses fewer simulations to converge to this value. Moreover, the average
simulation length (i.e., the average number of simulator steps) taken by our
method is significantly less than the monolithic approach. For the compositional
method, the average simulation length is calculated by summing the number
of simulation steps of all sub-scenarios and dividing it by the total number of
simulation runs, i.e., 383. Notice that compared to the monolithic approach, our
compositional method provides more information about the safety of the system
in different sub-scenarios. For example, we see that the system does not violate
the system-level specification in subScenario1, along with the individual spec-
ification satisfaction probabilities for each sub-scenario, whereas the monolithic
approach does not provide any insight into the system behavior across different
sub-scenarios. We conclude by noting that on a Quad-Core Intel i7 processor
clocked at 2.3 GHz and a 32 GB main memory, our compositional statistical ver-
ification method took a little over 2 h to converge for both uniform and Halton
sampling, whereas the monolithic baseline took 6 h for uniform sampling and a
little over 8 h for Halton sampling to converge.

6.4 Case Study 2

We build on top of the first case study by adding two uniformly sampled sub-
scenarios before the first sub-scenario: subScenario0W and subScenario0B.
Both of these sub-scenarios start at the straight road segment connecting to
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Fig. 3. Experiment results for falsification and statistical verification of Case Study 1.

Table 1. Estimated specification satisfaction probabilities.

Uniform Sampling Halton Sampling

Estimated Number Mean Sim Estimated Number Mean Sim

Probability of Sim Length Probability of Sim Length

subScenario1 1.00 76 1100.07 1.00 72 1100.08

subScenario2L 0.91 187 657.04 0.90 188 657.23

subScenario2S 0.90 70 685.97 0.93 68 688.71

subScenario2R 0.88 50 868.22 0.90 58 869.48

Compositional 0.90 383 777.81 0.91 386 777.27

Monolithic 0.88 639 1796.28 0.89 698 1796.90

the road segment of subScenario1. subScenario0W samples a position for a
wall that blocks half of the road (Fig. 2e), and subScenario0B (Fig. 2f) samples
positions for three oil barrels. Both of these sub-scenarios can potentially cause
a specification violation if either Leader or Follower cannot perform the nec-
essary maneuver on time to avoid a collision with these obstacles. Specifically,
Leader’s controller uses its LiDAR sensor to sense surrounding obstacles and
attempts to avoid them while still following the yellow line whereas Follower
does not implement any obstacle avoidance procedure, so to avoid obstacles, its
needs to follow the maneuvers of Leader precisely.

Falsification. Similar to the previous case study, we run both methods with
10 different random seeds, and our method is, again, run in the batched mode
with a batch size of 5. Figure 4a presents the results for falsification. Similar to
the previous case study, both methods find counter-examples before their output
distributions stabilize. Figure 4a shows that our method finds counter-examples
significantly faster than the baseline, and its standard deviation is more stable.
Between uniform and Halton sampling strategies, we observe a similar pattern to
that observed in 6.3, i.e., due to its uniform coverage property, Halton sampling
finds counter-examples slightly faster. Notice that the simulator steps in these
experiments are smaller than the previous one since the new initial sub-scenarios
can also potentially cause a specification violation, whereas in the previous case
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study, we have not observed any specification violation in the first sub-scenario;
therefore, we find counter-examples earlier in this case study.

Statistical Verification. To compare the compositional statistical verification
with the monolithic baseline, we run both until their output distributions stabi-
lize. However, for this experiment, we set the convergence threshold to a larger
value, i.e., Δ = 0.005, and we also set an upper bound of 100 simulations for the
number of simulations performed. Specifically, the statistical verification process
terminates either when the output distributions converge or when the process
reaches 100 simulations. The motivation for this decision is to understand how
the proposed method compares when fewer simulations are performed, which
causes output distributions to be less accurate for each sub-scenario. With the
given threshold value, i.e., Δ = 0.005, the compositional approach stabilizes
before reaching 100 simulation runs whereas the monolithic baseline reaches
the upper bound of 100 simulations before its output distribution converges.
Figure 4b presents the results for this experiment. We observe that the proposed
approach performs better than the baseline, and we also see a slight increase in
the total number of simulator steps due to Halton sampling. Since the baseline
cannot converge to a stable output distribution before 100 simulations, its results
are statistically less reliable than the results for the compositional method, and
its total number of simulator steps is upper-bounded by 100 simulations, not the
reliability of its output distribution.

Table 2 presents the comparison between the specification satisfaction prob-
abilities output by both methods. The estimated probability for the compo-
sitional method is calculated by combining the results for each sub-scenario.
Table 2 shows that even with a less accurate output distribution approximation,
probabilities estimated by both methods are close to each other. Moreover, even
though the number of simulations performed by the compositional method is
more than the monolithic baseline (which is due to the fact that the baseline
reaches the upper bound for the number of simulations), the average simulation
length (i.e., the average number of simulator steps) is much smaller than the
baseline since the compositional approach performs shorter simulations at the
sub-scenario level. The average simulation length for the compositional method is
calculated by combining the results from all sub-scenarios. Note that our method
also provides more insight into the system behavior. For example, in Table 2, we
observe that subScenario0W has the smallest specification satisfaction probabil-
ity, which implies that the system does not perform well in the presence of large
obstacles blocking half of the road. We conclude by noting that on the same
hardware as the previous case study, our compositional statistical verification
method took a little over 1 h to converge for both uniform and Halton sampling,
whereas the monolithic baseline took 1.5 h to reach the simulation limit for both
sampling strategies.
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Fig. 4. Experiment results for falsification and statistical verification of Case Study 2.

Table 2. Estimated Specification Satisfaction Probabilities for Case Study 2.

Uniform Sampling Halton Sampling

Estimated Number Mean Sim Estimated Number Mean Sim

Probability of Sim Length Probability of Sim Length

subScenario0W 0.63 41 924.49 0.55 53 861.08

subScenario0B 0.94 31 1235.32 0.90 30 1159.70

subScenario1 1.00 8 1122.75 1.00 25 1122.92

subScenario2L 0.92 63 656.05 0.94 62 660.84

subScenario2S 0.92 26 687.88 0.88 26 683.46

subScenario2R 0.94 16 885.44 0.93 15 895.73

Compositional 0.73 185 857.10 0.66 211 856.30

Monolithic 0.69 Timeout Timeout 0.61 Timeout Timeout

7 Related Work

Compositional Analysis Methods. Formal compositional analysis techniques have
a long history in the design and verification of systems [3–6,8,10,15,18]. Many of
these methods are based on assume-guarantee reasoning. These include methods
concerned with compositional reasoning for properties expressed in temporal
logics [3,5], approaches with a focus on compositional verification for models
such as interface and I/O automata [10,15], and those for the contract-based
design of systems [2,18]. With the rise of ML-based components, approaches
for the compositional verification of systems with black-box components have
been investigated. For example, an approach for the compositional falsification
of systems with DNN components was introduced in [8]. An initial investigation
of compositional verification for these types of systems was introduced in [19]. In
contrast to these approaches, our introduced framework provides a compositional
approach from a simulation-based, not model-based, analysis perspective, with
the goal of increasing the scalability of simulation-based methods.
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Statistical Analysis Methods. The increasing complexity of cyber-physical sys-
tems, making combinatorial methods infeasible, has increased the interest in
investigating statistical analysis methods [1,21,27–30]. Coined by the term sta-
tistical model checking [16], many scalable simulation-based methods have been
introduced in the literature that can give formal statistical guarantees on the
correctness of a system relying on different statistical methods. For example,
Zuliani et al. show how a statistical model approach based on Bayesian statis-
tics can be used to solve the probabilistic model checking problem for temporal
properties and for system models given by Stateflow-style hybrid systems with
probabilistic transitions [30]. Younes and Simmons [29] use hypothesis testing
and discrete-event simulation to perform probabilistic verification of continuous-
time stochastic processes. David et al. [7] present an approach based on statistical
model checking to check the correctness of timed systems. In addition to han-
dling systems with large state spaces, a significant benefit of using statistical
model checking is that it can handle systems whose implementation models are
unknown. For example, Sen et al. [22] present a statistical approach for the ver-
ification of stochastic systems based on Monte Carlo simulation and statistical
hypothesis testing, with no knowledge of a formal model for the system. An
improved algorithm is provided by Younes [26]. Our framework can be instanti-
ated with all the methods mentioned above, allowing for a compositional app-
roach to applying these statistical model-checking methods.

8 Conclusion

We presented a framework for the compositional simulation-based analysis of
AI-based autonomous systems. Given a simulation-based analysis task, our app-
roach decomposes the task into several smaller simulation-based analysis tasks
avoiding the execution of expensive long-running simulations. Results for the
overall tasks are computed by stitching together the results obtained from the
smaller analysis tasks. We show how our framework can be used to generate
compositional algorithms for falsification and statistical verification. Our exper-
imental results show the scalability and efficacy of our approach in comparison
to monolithic simulation-based analysis methods.
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