
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023 3679

ULGEN: A Runtime Assurance Framework for
Programming Safe Cyber–Physical Systems

Beyazit Yalcinkaya , Hazem Torfah , Ankush Desai, and Sanjit A. Seshia , Fellow, IEEE

Abstract—We present ULGEN, a runtime assurance (RTA)
framework for programming safe cyber–physical systems (CPSs).
In ULGEN, a system is implemented as a collection of asyn-
chronous processes executing RTA modules which are general-
izations of the well-known Simplex architecture. An RTA module
is composed of a set of safe controllers (SCs), designed to guaran-
tee certain safety specifications, and a set of advanced controllers
(ACs), optimized for performance, each defined to run under the
specific conditions of the operating environment, and a decision
module implementing the switching logic between the controllers.
A source of complexity in achieving safe CPS is that these
systems often involve concurrently interacting components with
different execution semantics. To this end, ULGEN allows for
the definition of RTA modules with either event-driven or time-
driven execution semantics and encapsulates such components
into RTA modules. It further provides primitives for imple-
menting priority-based communication between asynchronous
processes, which is a necessary feature for task prioritization
mechanisms, such as contingency plans and interrupt service rou-
tines. The framework also provides formal guarantees on the safe
execution of RTA modules based on a formal definition of well-
formedness. In ULGEN, a well-formed RTA module combines
SCs and ACs in a way that guarantees the underlying safety
specifications assured by the SCs while delivering the desired
performance offered by the ACs. We compare the safety guar-
antees of ULGEN against other state-of-the-art RTA frameworks
and demonstrate its efficacy in implementing safe and perfor-
mant CPS by presenting an extensive experimental evaluation of
five case studies both in a simulation environment and on a real
robotic platform.

Index Terms—Cyber–physical systems (CPSs), formal methods,
robotics, runtime assurance (RTA), runtime verification.

I. INTRODUCTION

DEPLOYING autonomous cyber–physical systems (CPSs)
in safety-critical domains present several challenges,

including the complexity of their operating environments and
the growing trend of using learning-enabled components in
tasks, such as perception, prediction, and planning [37]. It is,

Manuscript received 6 August 2022; revised 19 December 2022; accepted
26 January 2023. Date of publication 17 February 2023; date of current
version 20 October 2023. This work was supported in part by NSF under
Grant 1545126 (VeHICaL) and Grant 1837132; in part by DARPA under
Contract FA8750-18-C-0101 (AA); in part by Berkeley Deep Drive; in part
by C3DTI; and in part by Toyota through the iCyPhy Center. This article was
recommended by Associate Editor A. Shrivastava. (Corresponding author:
Beyazit Yalcinkaya.)

Beyazit Yalcinkaya, Hazem Torfah, and Sanjit A. Seshia are with the
Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, Berkeley, CA 94720 USA (e-mail: beyazit@
berkeley.edu; torfah@berkeley.edu; sseshia@berkeley.edu).

Ankush Desai is with the Amazon Web Services, Amazon Inc, Cupertino,
CA 95014 USA (e-mail: ankushpd@amazon.com).

Digital Object Identifier 10.1109/TCAD.2023.3246386

therefore, crucial to develop techniques for runtime assurance
(RTA) of CPS, including runtime monitoring and safe fall-
back mechanisms. Autonomous CPS involves complex and
uncertified software, such as learning-based components that
can be hard to verify. Runtime monitors are, thus, necessary
for maintaining situational awareness and triggering the right
contingency plans and interrupt-service routines to maintain
safety.

Programming safe CPS instrumented with runtime moni-
tors requires careful design and implementation of their RTA
architecture. Several frameworks have been presented in the
literature introducing systematic ways for implementing and
integrating RTA modules into CPS [7], [14], [20], [21]. One
example is the SOTER framework [7], which provides a lan-
guage for programming robotic systems with time-driven RTA
modules. Another example is the ROSRV framework [20]
building on the prominent robot operating system (ROS) [34].
ROSRV allows for the definition and integration of moni-
toring nodes that intercept commands and messages passing
through the system when the underlying monitoring specifi-
cation is violated. These and other frameworks have shown
promising results in building safe CPS, but they are limited
to certain communication and computation models. Moreover,
autonomous CPS are complex systems composed of various
concurrently interacting components often based on different
execution semantics. Some are time-driven, i.e., they employ
a fixed execution frequency. Others are event driven, i.e., their
execution depends on the arrival of data from other compo-
nents. Therefore, a general framework for programming safe
autonomous CPS should provide flexibility and the right tools
for implementing RTA modules with different communication
and computation models while providing guarantees on the
safety of the system behavior.

In this article, we present ULGEN,1 a framework for design-
ing and programming asynchronous autonomous CPS with
both event-driven and time-driven RTA modules and with an
underlying formalism for building provably safe RTA mod-
ules. In ULGEN, a program defines a set of asynchronously
communicating processes interacting with each other using a
message-passing communication model. Its language builds on
P [8], an event-driven asynchronous programming language.
ULGEN extends P with: 1) primitives for RTA modules used
as building blocks for programming safe systems; 2) support
for both time-driven and event-driven execution semantics for
RTA modules; and 3) event priorities for task prioritization.

1In Turkic and Mongolian mythology, Ülgen is a creator-deity who assumes
the protectorship of humankind against the god of evil and darkness.

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9987-635X
https://orcid.org/0000-0002-9628-1200
https://orcid.org/0000-0001-6190-8707

3680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Fig. 1. RTA module architecture of the ULGEN framework.

An RTA module in ULGEN is a generalization of the widely
used Simplex architecture [38]. In Simplex, an RTA module
consists of three components: 1) an advanced (untrusted) con-
troller (AC/UC); 2) a safe (trusted) controller (SC/TC); and
3) a decision module (DM). The AC is used for operating
the system under nominal circumstances and is designed to
achieve high performance. This controller may be an off-the-
shelf (black-box) component that is not necessarily certified.
The SC is a certified backup controller that takes over when,
for example, abnormalities in the execution of the AC are
observed or when the system exits the safe operational envi-
ronment of the AC. The DM is a trusted component that
implements the switching logic between the AC and the SC.
The switching logic is based on a safety specification that if
violated, triggers a switch in operation from the AC to the SC.
If at some point the system is brought back to a safe state, the
DM switches back to the AC. ULGEN generalizes the Simplex
architecture by allowing an RTA module to comprise a set of
two or more controllers (see Fig. 1). For example, different
controllers may be designed for different environmental con-
ditions (e.g., weather, time of the day, etc.) as those can have
significant effects on the behavior of the system (e.g., see [16]).
Thus, in practice, a DM should implement a switching logic
between a larger set of controllers. Furthermore, in comparison
to the standard Simplex architecture, where the DM operates
periodically, according to a fixed frequency, thus, limiting the
RTA module to time-driven semantics, the ULGEN language
allows for the definition of both time-driven and event-driven
RTA modules. The execution frequency of a DM in ULGEN

is bound to the decision frequency of the current controller
of the RTA module, which enables us to extend traditional
RTA module architecture to event-driven semantics. Finally, an
important feature of ULGEN is that it allows for the definition
of priority-based communication, i.e., priority-based message
passing, where each asynchronous process operates on its local
event queue, and events are associated with different schedul-
ing priorities. This mechanism is necessary for implementing
task prioritization such as in interrupt-service mechanisms
over different controllers and allows for the implementation
of coordinated switching mechanisms between RTA modules.

The underlying formalism of ULGEN allows for the imple-
mentation of provably safe RTA modules. We present a set

of well-formedness properties for ULGEN programs and show
that satisfying these guarantees the safety of the system. We
prove that if the initial state of a well-formed RTA module is
within its operating region, then it will never leave this region.

We demonstrate the efficacy of ULGEN in five robotic
case studies and show that ULGEN enables the modular
design of robotic systems and can flexibly interface with
well-established monitoring tools and robotic platforms. We
showcase this by interfacing ULGEN with Reelay [41], a mon-
itoring tool for metric temporal logic (MTL) [23], and by
implementing the software stack of a real robotic platform.

We summarize our contributions as follows.
1) We introduce the ULGEN framework. ULGEN uses RTA

modules as building blocks for asynchronous processes.
It provides both event-driven and time-driven execu-
tion semantics for RTA modules, extends the traditional
Simplex architecture to multiple controllers, and defines
a priority-based communication mechanism for task
prioritization.

2) We present a theoretical formalism for the well-
formedness of systems designed with ULGEN and prove
that such systems satisfy their safety specifications.

3) We demonstrate the efficacy of ULGEN in implement-
ing safe and performant CPS by presenting an extensive
experimental evaluation of case studies both in a simu-
lation environment and on a real robotic platform.

The outline is as follows. Section II provides an overview,
Section III is the formalism, Section IV presents our toolkit,
Sections V–VII demonstrate case studies, Section VIII dis-
cusses the related work, and Section IX concludes this article.

II. OVERVIEW OF ULGEN

We present a case study to reveal high-level details of
ULGEN and to introduce the ULGEN language. Further details
and evaluation of the case study are given in Section VI-A.

A. Motivating Example

Consider a robot surveillance system, where a robot is
tasked to visit a sequence of waypoints infinitely often while
ensuring that the mission never fails due to battery deprivation.
For simplicity, we assume that the environment is known to the
robot a priori. To safely execute the mission, the robot must
unceasingly satisfy the following four specifications: (S1) visit
surveillance locations in the correct order; (S2) compute reach-
able plans between locations; (S3) closely follow a reference
trajectory between waypoints; and (S4) never deplete all of
the battery. While assuring the safety requirements, the robot
also needs to provide adequate performance in terms of reach-
ing its target waypoints as fast and as efficiently as possible.
Advanced off-the-shelf software can be used to achieve such
performance, e.g., for motion planning, third-party libraries
such as OMPL [40]. However, the execution of plans com-
puted by such components needs to be monitored and validated
against the safety requirements, e.g., a plan should not lead to
battery deprivation, i.e., a failure.

Implementing this system to satisfy the safety and
performance requirements stated above requires careful design
of the communication and execution of the several components

YALCINKAYA et al.: ULGEN: A RTA FRAMEWORK FOR PROGRAMMING SAFE CPSs 3681

Fig. 2. Compositional RTA system, boxes are asynchronous components.

of the system. A high-level design of the software architecture
is shown in Fig. 2. It consists of the following components.

(S1): A robot machine manages the tasks to be executed
by the system and serves as the interface between an
application layer and the motion planner.

(S2): The motion planner computes a motion plan for a
task and forwards the plan to the plan executor.

(S3): The plan executor executes the corresponding motion
primitives, i.e., low-level controls, to complete the
motion plan.

(S4): Finally, the battery observer monitors the battery
levels of the robot.

The robot machine is notified by the plan executor through
a specific event indicating that the plant has reached the cur-
rent waypoint, see the arrow from the plan executor to the
robot machine in Fig. 2. Once a plan is executed, the next
waypoint is forwarded to the motion planner. All components
in Fig. 2 communicate asynchronously. For example, the bat-
tery observer concurrently communicates with both the motion
planner and the plan executor to request battery charging plans
when necessary, or to inform that a battery recovery proce-
dure has been completed. Supporting both event-driven and
time-driven RTA modules is a necessity for implementing our
robot system. While the robot machine and motion planner are
event-driven since motion planning should occur only when
there is a location to go to, the plan executor and the battery
observer need to be time driven. The plan executor executes
certain motions, and the battery observer monitors the battery
level in fixed time periods. All in all, we need a modular way
to implement the different asynchronous components, we need
to be able to define different execution behaviors for each com-
ponent, and finally, we need a mechanism for priority-based
event handling as the system has multiple concurrent objec-
tives with different priorities, e.g., when the battery is critically
low, recovering the battery has a higher priority than reaching
the next waypoint.

B. Programming With ULGEN

The ULGEN language builds on P, an asynchronous event-
driven programming language that unifies modeling, program-
ming, and verification [8]. We start by giving some background
on P and then explain the new features of ULGEN.

1) P Programming Language [8]: A P program consists of
a set of state machines communicating asynchronously with
each other in a message-passing fashion using events. In our

Fig. 3. ULGEN Program implementing the robot surveillance case study.

example in Fig. 3, we declare four state machines for the robot
machine (line 8), the motion planner (line 9), the plan execu-
tor (line 33), and the battery observer (line 49). Details are
given for the motion planner and plan executor state machines.
Events communicated between the state machines are declared
at the beginning of the program (lines 2–6). Notice that
between lines 2 to 6 only line 2 is native P syntax as P does
not support event priorities. A state machine consists of sev-
eral states. For example, the motion planner has two states
(declared in lines 23 and 24), an initial state that switches to
Run once the machine starts executing. Transitions between
the states are defined using the goto keyword. Actions of
a state or a transition to another state can also be triggered
by the receipt of an event, e.g., in the Run state of plan
executor, in line 44, upon receiving eBatteryLow a transi-
tion to LowBatteryRun is taken and a predefined procedure
lowBatteryEventHandler is executed. Received events
are placed into local FIFO queues and fetched from there.

P has a systematic testing engine for identifying incorrect
behaviors of the model, e.g., deadlock detection. It can be
translated to executable C code and is, therefore, a powerful
language that bridges the gap between the high-level model
definition and the low-level implementation. P has been used
to develop the USB 3.0 driver inside Windows 8.1 [8] and also
for building reliable distributed systems [9]. Thanks to its state
machine-based asynchronous event-driven semantics, it has
also been used for programming various robotic systems [6],
[7], [10], [39]. For implementing the intended functionality of

3682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

the machines in our example above, P is, however, missing
some features. In ULGEN, we build on P and extend it to a
general language for building safe CPS by adding features for
defining real-time behavior, event prioritization, and language
primitives for the definition of RTA modules, as we show next.

2) ULGEN Programming Language: In ULGEN, we follow
an RTA-based approach to implementing the states of a state
machine. Specifically, the ULGEN language expands on P by
adding new building blocks called RTA modules declared by
the keyword rtamodule in the states. We call machines with
RTA modules runtime-assured state machines (RTA-SMs). An
example of an RTA module is given in line 25 in Fig. 3. An
rtamodule block is defined over several controllers, each
identified by the keyword controller, and a DM identi-
fied by the keyword decisionmodule. Implementations of
the controllers and the controller switching logic are given
earlier and are declared by the keyword fun (which defines
a sequential procedure), as in lines 14–22. For this RTA mod-
ule, we use an AC named UC that computes a plan using
some off-the-shelf motion planning library, and an SC named
TC, that uses a certified, yet not necessarily optimal planner.
The controller switching logic is defined by the f_DM func-
tion (lines 14–17). The f_DM function (defining the controller
switching logic) and the decision frequency mapping, together,
form the DM (line 28), which is compiled into a procedure
that runs according to the ULGEN semantics. Controllers are
assigned to regions, i.e., subsets of system states. The union
of all controller regions is called the operating region of the
machine, which must cover the state space over which the
RTA is defined, and moreover, it must partition this space. In
motion planner, the RTA module checks whether the machine
is within the region of UC, and if not switches to TC, and vice
versa, as shown in lines 15 and 16. Each state of an RTA-SM
can have at most one RTA module.

The RTA module in line 25 is an event-driven RTA mod-
ule, i.e., the currently operating controller is executed once
every time a ePlanRequest or ePlanRequestX event
is processed. Upon receiving an event, handler is executed
before running the current controller of the RTA module. The
DM is executed in accordance with the execution of the oper-
ating controller. In the RTA module in line 25, the DM is run
before every single execution of UC or TC, as defined in line
28. Thus, for this specific RTA module, every execution may
trigger a controller switch depending on the current region.

ULGEN also supports time-driven RTA modules, e.g., the
plan executor. The RTA module in line 36 is defined over
SafeMotionC and AdvMotionC operating based on fixed
frequencies, both with 16-ms periods in the example. As in
the event-driven case, the DM is dependent on the decision
frequency of the executing controller. Here, the DM executes
every 50 executions of the SafeMotionC controller or every
ten executions of AdvMotionC, as defined in lines 39 and 40.
A time-driven RTA module does not allow an on statement
as it operates independently from any events received.

Finally, events in ULGEN are declared with a corre-
sponding priority. Priorities are needed to implement task
prioritization. For example, if the battery observer issues
a request to the motion planner to compute a plan to
recharge the battery of the robot (ePlanRequestX), then
this task needs to be executed before executing any plan
requested by the robot machine (ePlanRequest). In our

example, ePlanRequest (priority 1) has a lower priority
than ePlanRequestX (priority 10). In ULGEN, priorities
are handled by replacing the FIFO queues of P with priority
queues. In this case, events with higher priorities are executed
first, e.g., battery recovery plans.

3) ULGEN Programming Framework: To define an RTA-
SM in ULGEN, the programmer defines a machine (e.g., lines
9–32), its local functions implementing the controllers (e.g.,
lines 18 and 19), the controller switching logic (e.g., lines
14–17), and finally declares either event-driven or time-driven
RTA modules in desired states (e.g., lines 25–30). Since P
allows foreign function calls to C/C++, programmers can
utilize existing controller implementations and still get the
RTA guarantees of ULGEN. By calling interface functions,
programmers can generate runtime monitors for temporal
specifications, log data to monitors, and check the latest sta-
tuses of monitors. In the controller switching logic (e.g., lines
25–30), monitors can be used to select the controller. The
ULGEN toolkit provides an interface for the Reelay runtime
monitoring tool [41], which can be extended to any state-
of-the-art monitoring tool. The ULGEN type system ensures
that RTA modules and RTA-SMs follow all formal definitions,
e.g., each controller has an associated decision frequency,
see Section IV for the details of the ULGEN language. A
ULGEN program satisfying well-formedness properties formal-
ized in Section III keeps the system safe, i.e., in the operating
region.

III. FORMALISM

In this section, we give a formalization of ULGEN programs
by defining syntax and semantics of: 1) RTA modules with
multiple controllers; 2) RTA-SMs; and 3) compositional RTA-
SM systems. We present the formalization for event-driven
RTA modules and show that it can be easily extended to
the time-driven case. Based on the given formalization, we
define the well-formedness properties of an RTA module and
an RTA-SM. We further show that a ULGEN program that
is a composition of well-formed RTA-SMs always keeps the
system safe, i.e., in its operating region. Finally, we conclude
by emphasizing the correspondence between the presented for-
malism and the ULGEN language, and give a guideline for
satisfying the well-formedness properties in practice.

We start by defining a few concepts that we will be using
in the formalism. An event e ∈ E is a name, where E is the
universe of all events. Each event is associated with an event
priority value given by a mapping p : E→ N. For two events
eh and el, p(eh) > p(el) indicates that eh has a higher priority
than el. Let V denote the universe of all values, for simplicity,
we assume that all variables share the same value universe V .
For a set of variables X and a valuation v : X → V , we use
v(x) to access the value of x ∈ X, we use v[Y] ∈ Y → V to
get the valuation of Y ⊆ X from v, and we use v[x ← c] to
denote a new valuation that updates the valuation of x ∈ X
with c ∈ V and that is equal to v for all other variables in X.
A controller c : (X → V) → (X → V) is a function running
on a variable valuation and returning a variable valuation.

A. Runtime Assurance Modules

We formally define RTA modules (RTA modules), their
well-formedness properties, the notion of execution for an RTA

YALCINKAYA et al.: ULGEN: A RTA FRAMEWORK FOR PROGRAMMING SAFE CPSs 3683

module, and prove that a well-formed RTA module keeps the
system in a region where its behavior is defined.

Definition 1 (RTA Module): An RTA module is defined as
a tuple M = (C, X, φ,�, Triggers), where:

1) C is the set of controllers executed by the RTA module;
2) X is the set of local variables. It particularly contains

three internal variables: a) xMtrigger stores the latest input
event that triggered the execution of the RTA module;
b) xMc stores the current controller (initially null), and
c) xMd counts the executions of the current controller;

3) φ : C→ 2X→V is a mapping from controllers to the set
of variable valuations, i.e., regions of controllers, s.t. for
all ci, cj ∈ C, if ci �= cj, then φ(ci) ∩ φ(cj) = ∅;

4) � : C → N is a mapping from controllers to natural
numbers representing decision frequencies;

5) Triggers ⊆ E is the set of input events triggering the
execution of the RTA module.

The mapping φ(.) corresponds to the controller switching
logic used in the DM of an RTA module for deciding the cur-
rent controller, e.g., in Fig. 3, the controller switching logic
(implemented by the f_DM function in lines 14–17) symboli-
cally defines the controller regions φ(.). For a controller c ∈ C,
we refer to φ(c) as the region of c, i.e., φ(c) indicates the set
of valuations required for starting to run c. Here, we assume
that the set of variables of an RTA module describes the state
of the RTA module adequately. Therefore, we define regions
for controllers over variable valuations. For a valuation v and
a controller c, if v is the current valuation and v ∈ φ(c), then
we say that the system is in φ(c). Decision frequencies define
the number of executions for each controller before checking
the current region again, i.e., if the system is in φ(c), then c
is executed �(c) times before checking the current valuation
to change the controller. Notice that a controller is not only
executed in its region, i.e., controller regions are not simply
the regions in which we only run the corresponding controller.
They are rather regions in which we decide to run the corre-
sponding controller c for the next �(c) executions. An RTA
module is run only when an event e ∈ Triggers is received, and
it is not executed otherwise. The notion of receiving events is
precisely defined in Section III-B.

For M = (C, X, φ,�, Triggers), we define the following.
1) Reach:((X → V) × ((X → V) → (X → V))× N)→

(X → V), s.t. Reach(v, c, d) is the variable valuation
obtained after executing c for d times starting from
v. Reach(.) is a well-defined function since we define
controllers as mappings from valuations to valuations.

2) ReachSet:((X→ V) ×((X→ V) → (X→ V))×N)→
2X→V , s.t. ReachSet(v, c, d) = ⋃d

i=1{Reach(v, c, i)}
is the set of reachable variable valuations within d
executions by executing c starting from v. As a short-
hand notation, we define ReachSet(φ(c), c, d) =⋃

v∈φ(c) ReachSet(v, c, d).
3) � = ⋃

c∈C φ(c) is the safety invariant of M, it also
refers to the operating region of M since the behavior
of M is undefined outside �. For a valuation v, if v ∈ �,
then we say that v is safe, and if v is the current valuation
of M, then we say that the system is safe.

When it is not clear from the context, we will refer to com-
ponents of an RTA module M as CM, XM, φM, �M, and

TriggersM, respectively, and its safety invariant as �M. In
order for an RTA module to keep the system safe, i.e., in its
operating region, it needs to satisfy a set of properties. Next,
we capture these properties by introducing the notion of a
well-formed RTA module, and we explain how a well-formed
RTA module always keeps the system safe.

Definition 2 (Well-Formed RTA Module): Let C = CT ∪CU
be a set of controllers consisting of a set of trusted (safe) con-
trollers (TCs) CT and a set of untrusted (advanced) controllers
(UCs) CU . An RTA Module M = (C, X, φ,�, Triggers) is
said to be well-formed if it satisfies the following properties.
(P1) (Safety) TCs must be safe. For all c ∈ CT ,

ReachSet(φ′(c), c, ∗) ⊆ �, where φ′(c) = φ(c) ∪⋃
c′∈CU

φ(c′) and ∗ indicates any natural number, i.e.,
executing a TC in its region or in the region of any UC
keeps the system in its operating region �.

(P2) (Liveness) If the system is recoverable, then the set of
TCs must eventually recover the system. If a UC region
is reachable from the current state of the system, then
there exists n ∈ N s.t. for i = 1, 2, . . . , n − 1, ci ∈ CT ,
cn ∈ CU , and Reach(φ(ci), ci,�(ci)) ∈ φ(ci+1), i.e.,
running a finite sequence of TCs leads to a UC region.

(P3) UCs must be executed with caution. For all c ∈ CU ,
ReachSet(φ(c), ∗,�(c)) ⊆ �, where ∗ is any controller,
i.e., the region and the decision frequency of a UC must
be assigned s.t. the system stays in the operating region
after executing any controller �(c) times.

See Section III-D3 for a detailed discussion of achieving
presented well-formedness properties in practice.

So far, we have only formally defined the notion of an RTA
module. Observe how this definition relates to the architecture
of an RTA module presented in Fig. 1. The set of controllers
C corresponds to the controllers listed in the figure, the set
of local variables X represents the variables used by the con-
trollers for execution, φ and � are the user-defined parameters
controlling the execution semantics of the RTA module (notice
that we have not yet defined the notion of execution for an
RTA module and its DM, but we will precisely define it in the
following paragraph), and Triggers is the set of events that
trigger the execution of the RTA module.

Next, to prove the safety of a well-formed RTA module,
we need to define the notion of execution and prove that run-
ning a well-formed RTA module on a safe valuation will keep
the system safe. In other words, the resulting variable valua-
tions will be in the operating region. Similar to a controller,
we define an action a : (X → V) → (X → V) as a
mapping. We differentiate between the two to be consistent
with state machine and RTA terminologies. Algorithm 1 is
the RTA action for an RTA module M defining the notion
of execution. Given a valuation, the procedure defined by
Algorithm 1 first checks the execution count of its current
controller, and if it is time to select a new controller, then
it checks the current region of the system (this step corre-
sponds to executing the f_DM function from Fig. 3) to update
the current controller and the execution count variable. Notice
that since controller regions are disjoint, line 5 is only exe-
cuted once. After deciding the current controller, the procedure
executes this controller, and returns the resulting new valu-
ation. Observe that an RTA action can be interpreted as a

3684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Algorithm 1 RTA Action of an RTA Module M
Require: v ∈ X→ V , where XM ⊆ X
Ensure: v′ ∈ X→ V , where XM ⊆ X

1: c, d← v(xMc), v(xMd)
 Save current controller and execution
count

2: if c = null ∨ d ≥ �M(c) then
 Check if controller update is
needed

3: for each ci ∈ CM do
 Iterate over controllers
4: if v[XM] ∈ φM(ci) then
 Check current region
5: c, d← ci, 0
 Update current controller and reset

counter
6: break
 Break since controller regions are disjoint
7: v′ ← (v \ v[XM]) ∪ c(v[XM])
 Run controller and update

valuation
8: return v′[xMc , xMd ← c, d + 1]
 Return the new valuation

supervisory controller for the controllers of an RTA mod-
ule. For the set of RTA modules M and the set of actions
A, α : M→ A maps RTA modules to RTA actions. As defined
above, ReachSet(v, α(M), d) ⊆ 2X→V is the reachable vari-
able valuations within d executions starting from the valuation
v running the RTA action α(M).

Theorem 1: For a well-formed RTA module M and an ini-
tial valuation of its variables v0, where v0(xMc) = null, if
v0 ∈ �M, then ReachSet(v0, α(M), ∗) ⊆ �M holds.

Proof: (P1) and (P3) guarantee that for any v ∈ �M,
ReachSet(v, c,�M(c)) ⊆ �M holds, where c ∈ CM and
v ∈ φM(c), i.e., running the corresponding controller of a
valuation will always keep the system safe. Algorithm 1 guar-
antees that α(M) will always update the current controller
c after �M(c) executions with a new controller c′ ∈ CM
s.t. v′ ∈ φM(c′) for the new valuation v′. Therefore, M
will always pick the corresponding controller for a valua-
tion and that controller will always keep the system safe
until the next controller decision of the RTA module. Thus,
ReachSet(v0, α(M), ∗) ⊆ �M holds for v0 and M.

Theorem 1 states that executing the RTA action of a well-
formed RTA module from a valuation in its operating region
will always lead to valuations in its operating region. Now
that we precisely defined RTA modules, we conclude with an
example clarifying the presented definitions for the reader.

Example 1: Consider a well-formed RTA module with an
AC with a decision frequency of 4 and an SC with a decision
frequency of 8. Let the figure above represent a small section
of this RTA module’s operating region, where the dotted line in
the middle separates the controller regions, and the solid line
bounds the operating region. The labeled points correspond to
the executions of the RTA module. Let point 1 be a decision
point for the RTA module (i.e., it is time to run the DM). Then
upon receiving an event triggering the RTA module, at point
1, the RTA module checks the current region (e.g., runs the

f_DM function from Fig. 3), sees that it is in AC’s region, and
then runs AC for the next four steps (i.e., until point 5).

In the given example, AC goes out of its own region,
which is perfectly aligned with the definition of a well-formed
RTA module, i.e., Definition 2. The crucial observation,
here, is that the controller regions are regions in which we
start running the corresponding controllers, and the decision
frequencies are the values that tell us how many steps we
need to run the controller before checking the system state
again. However, it does not mean that ULGEN only executes
controllers in their corresponding regions by immediately
switching the controllers. The current controller can go into
another controller’s region before checking the system state
again for a controller switch. This is a safe behavior, i.e., it
satisfies the properties (P1) and (P2) given in Definition 2.
(P1) defines the notion of safety for TCs, and (P3) bounds
the controller regions and the decision frequencies of UCs
so that they do not go out of the operating region. The cru-
cial observation in this definition is that both (P1) and (P3)
use � (which denotes the operating region of the RTA mod-
ule, and it is the union of the RTA module’s all controller
regions), not φ(.) (which is a mapping defining the spe-
cific controller regions). These properties guarantee that a
well-formed RTA module cannot go out of �, which means
that even if a controller goes out of its own region, it will
never leave the entire operating region, so it is, therefore,
guaranteed that there is always a controller to select for the
next controller switch. With constructs like controller regions
and decision frequencies, we give more control to the pro-
grammer to define adequate controller behaviors for their
applications.

B. Runtime Assured State Machines

Next, we define the integration of RTA modules with state
machines by introducing RTA-SMs. We then formally define
the notion of well-formedness for RTA-SMs, and prove that
a well-formed RTA-SM will always keep the system in its
operating region.

Definition 3 (RTA-SM): An RTA-SM is defined as a tuple
A = (S, s0, M, ρ, X, A, I, O, δ), where:

1) S is the set of states;
2) s0 ∈ S is the initial state;
3) M is the set of RTA modules;
4) ρ : S→ (M ∪ {null}) maps states to RTA modules;
5) X is the set of variables s.t.

⋃
M∈M XM ⊆ X;

6) A ⊆ 2(X→V) →(X→V) is the set of actions;
7) I ⊆ E is the set of input events;
8) O ⊆ E is the set of output events;
9) δ : S×(I∪{null})→ S×(O∪{null}) × A is the transition

function. δ(s, i) = (s′, o, a) is a transition from s to s′
receiving i, sending o, and executing action a.

Next, we define the well-formedness properties for RTA-
SMs, which are the backbone of the proof of safety.

Definition 4 (Well-Formed RTA-SM): An RTA-SM A =
(S, s0, M, ρ, X, A, I, O, δ) is said to be well-formed if it
satisfies the following properties.

1) For all M ∈ M, M must be a well-formed RTA module,
and for all Mi,Mj ∈ M, XMi ∩ XMj = ∅ or �Mi =

YALCINKAYA et al.: ULGEN: A RTA FRAMEWORK FOR PROGRAMMING SAFE CPSs 3685

�Mj , i.e., if the sets of variables of two RTA modules
intersect, they must have the same safety invariant.

2) For all si, sj ∈ S, ρ(si) = ρ(sj) iff ρ(si) = ρ(sj) = null,
i.e., each state has a unique RTA module.

3) For any δ(s, i) = (s′, o, a), we have the following.
(D1) If ρ(s) = null or i �∈ Triggersρ(s), then for all

x ∈ ⋃
M∈M XM, and for all v, v′ ∈ (X → V) s.t.

a(v) = v′, v(x) = v′(x) holds, i.e., v′ is different
than v only for variables that are not used by any
RTA module.

(D2) If i ∈ Triggersρ(s), then we have a = α(ρ(s)), i.e.,
if i is a triggering event of the RTA module of s,
we run the corresponding RTA action of that RTA
module.

Definition 4 enforces that RTA modules of a well-formed
RTA-SM must have the same safety invariant if their variables
intersect; thus, an RTA module cannot modify the variables of
another RTA module for a different safety invariant. This is a
crucial property to avoid unsafe behavior that might emerge
from unnecessarily complex relationships between RTA mod-
ules of an RTA-SM. For example, consider the case of two
RTA modules (of the same RTA-SM) with conflicting safety
invariants on a set of variables. As the machine changes states
and runs these RTA modules, actions of one would violate
the safety invariant of the other, which would cause an unsafe
behavior w.r.t. to the violated safety invariant. By disallowing
such variable intersections, we make sure that such conflicts
between RTA modules do not occur.

Before we define the execution semantics of an RTA-SM
and prove the safety of its behavior, we highlight the corre-
spondence between Definition 3 and Fig. 3. Observe that lines
9–32 of Fig. 3 is a programmatic description of an RTA-SM
with an event-driven RTA module given in the ULGEN syntax.
Specifically, the motion planner machine defined in lines 9–32
of the ULGEN program in Fig. 3 defines a set of states along
with an initial state and dedicated RTA modules in certain
states, declares a set of variables, and defines the transition
function by describing the transition behavior in each state
using input/output events and actions executed on the tran-
sition. That machine has only one RTA module; therefore,
with cautious programming, it trivially satisfies the conditions
over variables given in Definition 4, i.e., the first bullet point
and (D1). The other conditions, i.e., the second bullet point
and (D2), are enforced by the semantics of the language and
the type checker, see Section IV for a detailed discussion of
the ULGEN language and the toolkit.

Next, we continue with the execution semantics of an RTA-
SM by defining the transition system for an RTA-SM, and we
use this definition to prove the safety of its execution.

Definition 5 (RTA-SM Transition System): A TS for A =
(S, s0, M, ρ, X, A, I, O, δ) is T (A) = (Q, q0,−→).

1) Q : S × (X → V) × (N→ I), i.e., a state consists of a
state of A, a valuation of X, and an event queue for I.

2) q0 = (s0, v0, fempty) is the initial state, i.e., s0 is the ini-
tial state of A, v0 is the initial valuation for X, where
variables are initialized with their default values and
v0(x

ρ(s0)
c) = null, and fempty is the empty queue.

3) −→ : (Q × (I ∪ {null}) → Q) ∪ (Q → (O ∪ {null}) ×
Q) is the transition function. We have three kinds of
transitions.

Null (s, v, f)
o−→ (s′, v′, f) if there exists a transi-

tion δ(s, null) = (s′, o, a) with a(v) = v′ and
v′(xρ(s′)

c) = null, i.e., a null transition not dequeu-
ing any event.

EnQ (s, v, (i0, . . . , in))
i−→ (s, v, (i0, . . . , ik−1, i, ik, . . . ,

in)), where i �= null, for all i′ ∈ {i0, . . . , ik−1},
p(i′) ≥ p(i), and for all i′′ ∈ {ik, . . . , in}, p(i′′) <

p(i), i.e., inputs are stored with respect to their pri-
orities. We assume this transition type has a higher
priority than others.

DeQ (s, v, (i0, i1, . . . , in))
o−→ (s′, v′, (i1, . . . , in)) if there

exists δ(s, i0) = (s′, o, a) with i0 �= null and a(v) =
v′. If s �= s′, then v′(xρ(s′)

c) = null.
A run of A is a sequence of states defined over T (A) as

follows:

q0
e0−→ q1

e1−→ · · · en−1−−→ qn
en−→ · · ·

where qi ∈ Q and ei ∈ I ∪ {null} ∪O. Note that an input event
can occur at any step of a run since it depends on the envi-
ronment. The operating region of A is �A =

⋃
M∈M �M.

Theorem 2: For all runs of a well-formed RTA-SM A, if
v0 ∈ �A holds for the initial state (s0, v0,∅), then for all states
(si, vi, fi) appearing in a run, vi ∈ �A holds.

Proof: EnQ do not change variable valuations by
Definition 5, i.e., an enqueue transition will always keep the
system in the operating region if it is taken from a safe valu-
ation. Now, we consider other transition types, i.e., Null and
DeQ. By (D1) in Definition 4, taking a transition on a null
event (notice that a null event cannot trigger the execution
of an RTA module by Definition 1), taking a transition in a
state without an RTA module, and taking a transition on an
event that does not trigger the RTA module of a state does not
change the valuation of any variable used by an RTA module
of A. Hence, the safety invariant will be satisfied after tak-
ing such a transition if it is taken from a safe valuation. By
Algorithm 1 and Theorem 1, running an RTA module start-
ing from a safe valuation will keep the system safe, i.e., since
Algorithm 1 only updates variables used by the RTA module
of the state, and Theorem 1 guarantees that these modifications
will keep the system in the operating region, we can conclude
that running an RTA module will keep the system safe. The
well-formedness properties for an RTA-SM in Definition 4
guarantees that this argument applies to RTA-SMs that have
RTA modules with both the same safety invariant and differ-
ent safety invariants. Thus, A will always satisfy its safety
invariant starting from a safe valuation.

Theorem 2 states that if an RTA-SM is initially in its
operating region, then it will always satisfy the safety invariant.

C. Compositional Runtime Assured State Machine Systems

Next, we extend our formalism to ULGEN programs. A com-
positional RTA-SM system (C-RTA-SM-S) S = {A0, . . . ,An},
which defines a ULGEN program, is the asynchronous compo-
sition of the set of RTA-SMs {A0, . . . ,An} under interleaving
semantics, see [25] for the details of this composition. A C-
RTA-SM-S (or a ULGEN program) S is said to be well-formed
if for all Ai ∈ S , Ai is well-formed, and for all Aj ∈ S , if
Ai �= Aj, then XAi ∩ XAj = ∅.

3686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Observe that a C-RTA-SM-S (a ULGEN program) is sim-
ply a collection of RTA-SMs communicating through asyn-
chronous events. Figs. 2 and 7 are high-level representations of
such programs used in the case studies. In these figures, each
box corresponds to an RTA-SM and arrows between the boxes
present high-level descriptions of the events sent between the
machines.

Theorem 3: For a well-formed ULGEN program S , and for
all Ai ∈ S , if vi

0 ∈ �Ai for the initial state (si
0, vi

0, fempty) of
Ai, then we have vi

j ∈ �Ai for all (si
j, vi

j, f i
j) of Ai.

Proof: Since RTA-SMs in S do not share any variables,
they cannot change the truth value of another RTA-SM’s
safety invariant. Thus, by this observation and the semantics
of asynchronous interleaving composition, each machine runs
in isolation. Then by Theorem 2, we conclude that the overall
system stays safe provided that it starts from a safe state.

Theorem 3 states that decomposing the overall safety
requirements of a system into invariants and implementing a
well-formed ULGEN program guarantees safety.

D. Remarks on Formalism and Well-Formedness

1) Time-Driven RTA Modules: So far, we have only consid-
ered the event-driven execution semantics of an RTA module.
For the time-driven case, one can formalize an RTA module by
having a dedicated triggering event instead of a set of events.
Then a timer machine can be defined as a timed automa-
ton [2], [3] to send timed events for triggering the time-driven
RTA module. We can interpret such events as environment
inputs; thus, the formalism trivially extends to the time-driven
case.

2) Connections to the ULGEN Language: We remark on
the correspondence between a ULGEN program and the
presented formalism using the motivating example from
Section II. The collection of ULGEN machines from Fig. 2,
i.e., the ULGEN program, defines a C-RTA-SM-S, where
each machine corresponds to an RTA-SM. Observe the one-
to-one correspondence between Definition 1 and the RTA
module declarations in Fig. 3. Just like the formal definition
in Definition 1, RTA modules in ULGEN programs declare
a set of controllers with decision frequencies along with a
set of triggering events, operate on a subset of the local
variables of their parent machines, and their DMs logically
define controller regions. Thus, ULGEN is a native language
for programming systems with the framework formalized in
this section.

3) Well-Formedness in Practice: The correspondence
between the formalism and the ULGEN language eases the
programming; however, one must satisfy the well-formedness
properties given in Definitions 2 and 4. Satisfying Definition 4
for an RTA-SM is somewhat trivial, i.e., it defines a unique
RTA module in each state, and makes sure that either
different RTA modules of an RTA-SM have the same safety
invariant, or they have different safety invariants and they
do not modify each other’s local variables. Observe that this
outlines a desirable and easy-to-follow modular programming
practice. Furthermore, the semantics of the ULGEN language
and type checks performed by the compiler guarantee the
second bullet point and (D2) in Definition 4 whereas the
other conditions [first bullet point and (D1)] can be easily

satisfied by following a principled programming practice as
mentioned. In Definition 2, (P1) and (P2) can be achieved
by using reachability analysis [15], [22], [29] and controller
synthesis frameworks [5], [18], [24], [35], respectively. To
achieve well-formedness, we have to also decide on decision
frequencies and regions for UCs to satisfy (P3). Synthesizing
these for a UC, a controller that, in general, we cannot
make any assumptions on besides a reasonable boundedness
assumption is a challenging problem and outside the scope
of this work. Still, we can provide a practical guideline for
well-formedness. The decision frequency and the region of
a UC define the tradeoff between performance and safety.
As an empirical approach, one can start from the most
conservative values, i.e., one for the decision frequency
and a restricted region, and then iteratively relax them
based on the requirements. Notice that the ULGEN language
provides an easy interface for configuring these parameters.
Specifically, the decision frequency parameter can be easily
tuned by changing the given mapping in the program, e.g.,
line 28 of Fig. 3, and since the controller regions are defined
symbolically, e.g., lines 14–17 of Fig. 3, one can relax and
restrict the controller regions by modifying the constraints of
this symbolic definition.

IV. ULGEN PROGRAMMING LANGUAGE AND TOOLKIT2

We built the ULGEN toolkit by extending the P language
framework. The toolkit has three components: 1) a compiler
for compiling high-level ULGEN programs to executable C;
2) a C runtime for executing the ULGEN programs; and 3) a
library for the Reelay monitoring tool [41] which can be used
for the controller switching logic. This library provides func-
tions for creating discrete and dense timed Reelay monitors,
logging data to a monitor, and checking the specification.

We extended the C runtime of P to support the following
features: 1) event priorities; 2) language primitives for RTA
modules; and 3) time-driven semantics implemented using OS
timers. To declare an RTA module, the programmer imple-
ments controllers and the controller switching logic as local
functions of the state machine, which can be entirely imple-
mented in the program or can call foreign C/C++ functions.
The compiler guarantees that the well-formedness properties
from Definition 4 are satisfied except for the first bullet point
and (D1) which must be accomplished by the programmer.
However, neither the compiler nor the runtime imposes the
well-formedness properties of Definition 2. It is the program-
mer’s responsibility to ensure that these properties are satisfied
by following the guidelines presented in Section III-D3.

Our extensions to P are both syntactic as well as semantic
as we added new language features. Specifically, time-driven
execution semantics and event priorities are new features and
cannot be expressed in the standard P language. For event-
driven execution semantics of RTA modules, we made changes
to the language semantics to assure safety. In particular, the
standard P runtime defines dequeuing and event handling as
separate atomic operations. However, for safety, we modified
this behavior for RTA modules by defining their executions
as atomic w.r.t. other machines, i.e., in ULGEN, dequeuing,

2Toolkit is available at https://github.com/BerkeleyLearnVerify/ULGEN.

YALCINKAYA et al.: ULGEN: A RTA FRAMEWORK FOR PROGRAMMING SAFE CPSs 3687

event handling, and controller execution are all a single atomic
operation which cannot be interleaved by other operations.

P offers a systematic testing engine for checking the cor-
rectness of P programs. Currently, our toolkit does not support
systematic testing of ULGEN programs. We consider sys-
tematically testing a program with real-time behavior as an
interesting problem on its own and leave it for future work.

Next, we note potential threats of our extensions to P.
1) Our backend uses OS timers for time-driven semantics,

which is not reliable for hard real-time systems whereas
it is performant enough for soft real-time systems as we
demonstrate in the following sections.

2) Event priorities enable task prioritization, but one should
note that it may expand the space of program behaviors.

Atomic execution of RTA modules is a restriction over stan-
dard P semantics, so it does not introduce any threats and
reduces the space of program behaviors.

P is shown to be a low overhead and scalable language in
various domains [7], [8], [10], [39]. Therefore, our toolkit is
also low overhead, and it is scalable to realistic applications
as we demonstrate in the case studies. Note that as our frame-
work combines different controllers and DMs, its scalability
is mainly limited by the scalability of these components.

V. EMPIRICAL EVALUATION: COMPARISON WITH SOTER

We present an empirical comparison of ULGEN with
SOTER [7]. Before starting, notice that SOTER lacks most
of the highlighted features of ULGEN: no event priorities,
no multiple controllers, no event-driven RTA modules, just
one AC, one SC, and time-driven RTA modules. Moreover,
it uses standard P; thus, the time-driven behavior is imple-
mented using explicit busy waits. Most importantly though,
SOTER defines controllers and the DM of an RTA module
as periodically executing nodes, and regardless of the cur-
rent state of the system, both controllers are executed, but the
DM enables/disables the outputs of the controllers through a
globally shared data structure implemented at C level.

A. Case Study: Simple Robot Braking System

We consider a two-wheeled robot tasked to move forward
and stop at a specific position. This system can be imple-
mented with only one RTA module, where the AC moves for-
ward, the SC stops the robot, and the DM monitors the position
for a controller switch. We implement the system in ULGEN

and SOTER, and we use the Webots [28], [42] simulator.
1) Evaluation: We answer the following question: “Do

both frameworks assure safety?,” where safety is defined as
braking on time. The task only depends on the behavior
of the frameworks and the environment dynamics, so we
run 100 simulations with different random seeds, and mon-
itor the position to detect safety violations. As P provides
multithreaded execution by assigning jobs to worker threads,
we run the experiments using both a single thread and two
threads to understand and compare concurrent behaviors of
frameworks.

Both single-threaded programs satisfy the specification. The
two-threaded ULGEN program also satisfies the specification
in all runs. However, the two-threaded SOTER program vio-
lates the specification in 82% of 100 simulations. This unsafe

Fig. 4. Webots environment for Section VI-A.

behavior of SOTER is due to the nondeterministic schedul-
ing of threads, and the fact that the controllers and the DM
are all asynchronously executing nodes, therefore, prone to
ordering issues. Moreover, the formalism of SOTER does not
define an ordering between the executions of the controllers
and the DM when they ought to run at the same time. Thus,
the unsafe behavior of SOTER in a multithreaded setting was
expected both from a theoretical perspective and from a prac-
tical one. Crashes due to scheduling issues were also reported
in the experiments of the SOTER work [7]. In ULGEN, such
scheduling issues are irrelevant as we impose a well-defined
execution order over components of an RTA module.

We also compare SOTER and ULGEN programs by using
the number of lines, a rough but arguably one of the few
quantifiable metrics for program simplicity. The SOTER pro-
gram consists of 100 lines whereas the ULGEN program only
has 50. As we built most of our features into the language,
the ULGEN program ends up being more readable and shorter.
Finally, we report that the automatically generated C code from
the ULGEN program has 1000 lines, which only has the C rep-
resentations of the constructs defined in the program, and it is
executed with the given semantics by our backend.

VI. EMPIRICAL EVALUATION: IN SIMULATION SETUP3

In this section, we present two case studies to evaluate the
safety and performance of ULGEN programs.

A. Case Study: Robot Surveillance System

We investigate the motivating example from Section II-A
in Webots [28], [42] and empirically evaluate the safety
and performance of its ULGEN implementation using
VerifAI [12], [13], a toolkit for the formal design and analy-
sis of AI/ML systems. The task is to navigate a two-wheeled
robot to visit waypoints w0, w1, w2, and w3, shown in Fig. 4,
infinitely often while maintaining an adequate battery level by
visiting the station (green area in Fig. 4) when the battery is
critically low. We implement the case study in ULGEN using
the design given in Fig. 2, where each concurrent component
is implemented using an RTA-SM with either event-driven or
time-driven RTA modules for assuring their specifications. To
evaluate the safety, we introduce faulty behavior by imple-
menting the UC of the plan executor as a controller which,
regardless of the input, turns left with probability 20% or

3Complete source code, documentation for implementation details, and
videos are available at https://github.com/BerkeleyLearnVerify/ULGEN.

3688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Fig. 5. Minimum battery level percentage observed in simulations versus
the number of simulations. In this example, the robot executes the procedure
for going to the station when the battery level drops below 20%.

moves forward with probability 80%. We refer to this spe-
cific controller as the random controller in the rest of this
article. The TC is a controller designed for closely follow-
ing an ideal trajectory between waypoints. To assure safety,
the plan executor implements two states running time-driven
RTA modules: 1) LowBatteryRun and 2) Run, the former
defines a more conservative decision frequency and controller
region for its UC. We use Reelay monitors for the controller
switching logic. For details, see the ULGEN repository.

1) Evaluation: We answer:
(Q1) Safety: “Does ULGEN assure safety?”
(Q2) Performance: “Does ULGEN maximize the usage of

UCs?”
We use the MTL falsifier of VerifAI with a cross-entropy sam-
pler. The falsifier searches for a configuration that fails the
mission due to a low battery level by sampling configurations
with different initial locations for the robot and the charger.
We ran the falsifier for 100 simulations with 150 000 simula-
tion steps (> 5 h of systematic testing). Our baseline executes
solely TCs.

a) (Q1) Safety: In all 100 simulations, the robot success-
fully performed surveillance. Fig. 5 presents the minimum
battery level observed in simulations generated by VerifAI.
The blue line is the ULGEN implementation and the green
line is the baseline. The baseline keeps a higher battery level
in general since ULGEN tries to execute the UCs whenever
possible. Specifically, since the UC of the plan executor is the
random controller, the robot loses the battery while moving to
the charger. The falsifier finds cases with slightly lower battery
levels, but it cannot falsify the system. Thus, our evaluation
shows that ULGEN can be used to program safe systems.

b) (Q2) Performance: We measure the performance by
analyzing the executions of the plan executor. We report
the average execution percentages over 100 simulations for
the RTA modules of LowBatteryRun and Run states. In
LowBatteryRun and Run, the UCs execute 16% and 46%
of all executions, respectively. This difference between the
execution percentages was expected as LowBatteryRun is
more conservative than Run. Fig. 4 presents the trajectory of
the robot after one tour in the default environment. Blue and
red represent executions of the UC and the TC of Run, respec-
tively. Purple and yellow represent executions of the UC and
the TC of LowBatteryRun, respectively. Fig. 4 shows as
if the UC of Run runs more often than its TC as the TC is
mostly used for fixing the orientation, and the UC is mostly
used for moving forward. Even with the random controller,
ULGEN maximizes the usage of UCs while assuring safety.

Fig. 6. Webots environment for Section VI-B.

B. Case Study: More Complex Robot Surveillance System

We present a more complex robot surveillance case study,
where five robots of two different types are present in an
environment (an ego robot and four secondary robots) with
static obstacles and two geo-fenced regions. The secondary
robots are tasked to randomly move in the environment while
avoiding collisions. The task of the ego robot is to perform
surveillance while satisfying several constraints: 1) waypoints
w0, w1, w2, and w3 must be visited in the given order;
2) motion plans must consist of waypoints inside the envi-
ronment; 3) motion plans must avoid geo-fenced regions;
4) motion plans must avoid static obstacles; 5) robot must
closely follow a trajectory between waypoints; 6) robot must
avoid collisions; 7) battery level must always be greater than
zero; and 8) position/orientation estimation cannot deviate
from the GPS/compass readings for more than a threshold.
Fig. 6 is the environment, where the blue robot is the ego
robot, red robots are secondary robots, brown boxes are obsta-
cles, and red regions are geo-fenced. Only geo-fenced regions
are known to the ego robot a priori. Fig. 7 presents the high-
level design of the ego robot, where each node represents a
concurrent component implemented as an RTA-SM with either
event-driven or time-driven RTA modules to satisfy its safety
specification. To emphasize safety, we use the random con-
troller as the UC of the collision-aware plan executor machine,
which turns left or moves forward with probabilities 20%
and 80%, respectively. This machine also defines two TCs:
1) a safe trajectory controller (designed for closely follow-
ing an ideal trajectory between waypoints) and 2) a collision
avoidance controller. To assure safety when the battery is low,
the collision-aware plan executor implements two states with
time-driven RTA modules: 1) LowBatteryRun and 2) Run,
where the former is more conservative. This case study is built
on top of the motivating example, and as before, Reelay mon-
itors are used for the controller switching logic. We refer the
reader to the ULGEN repository for further details.

1) Evaluation: We conduct a similar evaluation to
Section VI-A to answer (Q1) safety and (Q2) performance
questions. We use the MTL falsifier of VerifAI with a cross-
entropy sampler, which tries to falsify a specification stating
that there must always be enough battery and the robot must
always avoid geo-fenced regions. The falsifier searches for a
configuration to fail the mission due to a low battery level
or a violation of the geo-fences by sampling configurations

YALCINKAYA et al.: ULGEN: A RTA FRAMEWORK FOR PROGRAMMING SAFE CPSs 3689

Fig. 7. ULGEN Program for Section VI-B, boxes are RTA-SMs.

with different initial locations for the ego robot, the charger,
the secondary robots, and the boxes. We ran the falsifier
for 50 simulations with 300 000 steps (> 7 h of system-
atic testing). Our baseline is an implementation executing
solely TCs.

a) (Q1) Safety: In all 50 simulations, the robot success-
fully performed surveillance by keeping an adequate battery
level and avoiding geo-fenced regions. Fig. 8 presents the min-
imum battery level observed in simulations. The blue line is
the ULGEN implementation and the green line is the base-
line. We observe a similar pattern to the evaluation given in
Section VI-A, i.e., the baseline keeps a higher battery level in
general since the ULGEN implementation tries to execute its
UCs. Although the falsifier finds configurations where slightly
lower battery levels are observed, it cannot falsify the system.
Thus, our evaluation of a more complex system also shows
that ULGEN can be used to program safe systems.

b) (Q2) Performance: We use the metric from
Section VI-A for evaluating the performance by analyz-
ing executions of the collision-aware plan executor. We report
the mean of 50 simulations. In LowBatteryRun, the UC
executes 42%, the safe trajectory controller executes 47%,
and the collision avoidance controller executes 11% of all
executions. In Run, the UC executes 45%, the safe trajectory
controller executes 47%, and the collision avoidance con-
troller executes 8% of all executions. Fig. 6 is the trajectory
of the ego after one tour in the default environment. Different
colors of the trajectory line indicate different controllers of
the collision-aware plan executor. Purple, yellow, and white
represent executions of the random, the safe trajectory, and
the collision avoidance controllers of LowBatteryRun,
respectively. Blue, red, and gray represent executions of
the random, the safe trajectory, and the collision avoidance
controllers of Run, respectively. We observe similar patterns
in Fig. 6 and other simulations since TCs are used for
recovery and UCs are run otherwise. These results show
that even with the random controller, ULGEN maximizes the
usage of UCs while assuring safety.

Fig. 8. Minimum battery level percentage observed in simulations versus
the number of simulations. In this example, since the environment is larger
than the previous example, and there are obstacles and other robots present in
the environment, we increase the threshold for executing the battery recovery
procedure, i.e., it is executed when the battery level drops below 40%.

VII. EMPIRICAL EVALUATION: ON ROBOTIC PLATFORM4

We present two case studies to demonstrate an instantiation
of ULGEN programs on a real robotic platform and to evaluate
the safety and performance provided by our framework.

A. Case Study: Robot Surveillance System With Kobuki

We present a surveillance system on the iClebo Kobuki5

robot base controlled with a Raspberry Pi 3 Model B+ running
a 64-bit Ubuntu Server 20.04 LTS. We extend the ULGEN

program presented in Section VI-A. The design is the same as
Fig. 2 except that we do not have a battery observer as it is
redundant for this mission. The UC of the plan executor’s RTA
module is a PID controller with empirically tuned parameters
for performance, but its TC is the same as before. We used our
own monitors for this case study since ULGEN is agnostic to
the selection of the monitoring tool. We implemented a layer
of helper functions to control the robot using the standalone
Kobuki Core.6 For details, see the ULGEN repository.

We assume the environment is safe, i.e., no obstacles. The
task is to visit a sequence of waypoints. While performing
the task, the robot must: 1) visit surveillance locations in the
correct order; 2) compute safe motion plans between locations;
and 3) follow the ideal trajectory without deviating more than
40 cm. The robot also has to optimize a performance objective:
minimize the average lap time throughout the mission.

1) Evaluation: Similar to Section VI, we answer (Q1)
safety and (Q2) performance questions. We run the ULGEN

program on a Kobuki robot and record the mission details. We
restrict the surveillance task to three tours in the environment,
i.e., the robot starts from the station, makes three tours, and
returns back to the station. Our baselines are implementations
of the system with solely TCs and solely UCs.

a) (Q1) Safety: We focus on the specification of the
plan executor, i.e., the robot must follow the ideal trajectory
without deviating more than 40 cm. Fig. 9 presents the tra-
jectories of the robot for all three setups. Both the solely
TCs baseline and the ULGEN program satisfy the specifica-
tion whereas the solely UCs baseline enters the unsafe red
region. Due to the specific values of the decision frequencies
tuned for performance, the DM does not immediately switch

4Complete source code, documentation for implementation details, and
videos are available at https://github.com/BerkeleyLearnVerify/ULGEN.

5iClebo Kobuki’s functional, hardware, and software details are available
at http://kobuki.yujinrobot.com/about2/.

6Kobuki core is available at https://github.com/kobuki-base/kobuki_core.

3690 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

Fig. 9. Trajectories of the robot within three tours in the environment. The dashed black lines between waypoints represent the ideal trajectory. The red and
blue lines indicate the execution of the TC and the UC of the plan executor, respectively. The light and dark green regions indicate the regions of the TC and
the UC of the plan executor, respectively, and the red-striped regions indicate regions that violate the safety specification, i.e., deviating more than 40 cm.
(a) Solely TCs (SCs). (b) ULGEN. (c) Solely UCs (ACs). (d) Environment.

TABLE I
MISSION TIMES FOR SECTION VII-A

to TC in the light green region, but it switches before
leaving the light green region. See the example given in
Section III-A for further details about controller regions and
decision frequencies.

b) (Q2) Performance: We measure and compare the lap
times and the overall mission times for solely TCs, ULGEN,
and solely UCs implementations to evaluate the performance.
Table I reports the results. ULGEN provides a middle ground
between the two extremes. The solely TCs baseline fails to
optimize the performance, and the solely UCs baseline violates
the specification whereas ULGEN optimizes the performance
objective while assuring that the specifications are satisfied.

B. Case Study: Robot Exploration System With Kobuki

In this case study, we defer the safety assumption on
the environment, i.e., we extend the mission to perform
surveillance with unknown obstacles in the environment. This
modification about our environment assumptions requires us to
first perform an exploration tour to assure safety. We combine
and improve the implementation of the surveillance systems
presented in Sections VI-B and VII-A to accommodate the
safe exploration of the environment. We use the same hardware
and helper libraries as the ones presented in Section VII-A.
For further implementation details, see the ULGEN repository.

The task of the robot is to safely explore and perform
surveillance in an environment with unknown obstacles and
a geo-fenced region. To complete the mission, the robot must:
1) visit surveillance locations in the correct order; 2) com-
pute safe motion plans between locations; 3) obey geo-fencing
constraints; 4) avoid obstacles; and 5) follow the ideal tra-
jectory between waypoints without deviating for more than
30 cm while moving toward a waypoint, i.e., it is okay to
enter the red region while avoiding a bumped obstacle. The
robot should only execute its trusted controllers for the first
tour to safely explore the environment. As the robot explores

TABLE II
MISSION TIMES FOR SECTION VII-B

the environment, it must send the location of the identified
static obstacles to a server through a TCP connection. The
performance objective is to minimize the average lap time.

1) Evaluation: We answer two questions: (Q1) safety
and (Q2) performance. We run the ULGEN implementation on
a Kobuki robot and record the details. In our experiments, we
restrict the task to two tours in the environment, i.e., the robot
starts from the station, explores the environment by only exe-
cuting its trusted controllers in the first tour, makes another
tour for surveillance, and returns back to the station. Our
baselines are implementations with solely TCs and solely UCs.

a) (Q1) Safety: We again investigate the specification of
the plan executor. Fig. 10 presents the trajectories of the robot
for all three setups. The solely TCs baseline and the ULGEN

implementation keep the deviation from the ideal trajectory
below the given threshold and complete the mission success-
fully. Due to the specific values of the decision frequencies
tuned for performance, the DM does not immediately switch
to the safe trajectory controller in the light green region, but it
switches somewhere in that region. See the example given in
Section III-A for further details about why we do not need an
immediate switch between regions. The solely UCs baseline
violates the specification by entering the red region several
times. In the first lap, the solely UCs baseline deviates so
much that the robot does not collide with the obstacle. In the
second lap, it collides with the obstacle and fails.

b) (Q2) Performance: We measure and compare explo-
ration, surveillance, and overall mission times. Table II reports
the results. As we defer the safety assumption on the environ-
ment, in the exploration lap, the ULGEN implementation only
executes its TCs. Therefore, there is no performance gain com-
pared to solely TCs. As the solely UCs baseline collides with
the obstacle and fails in the second lap, we only report its
time for the first lap. ULGEN executes its UCs whenever the
robot is in a known safe region; therefore, ULGEN optimizes
the performance objective better than the solely TCs baseline.

YALCINKAYA et al.: ULGEN: A RTA FRAMEWORK FOR PROGRAMMING SAFE CPSs 3691

Fig. 10. Trajectories of the robot within two tours in the environment, i.e., exploration lap and surveillance lap. The dashed black lines between waypoints
represent the ideal trajectory. The red, yellow, and blue lines indicate the execution of the safety trajectory controller, the obstacle avoidance controller, and
the UC of the plan executor, respectively. The light and dark green regions indicate the region of the safe trajectory controller and the UC of the plan executor,
respectively, and the red-striped regions indicate regions that violate the safety specification, i.e., deviating more than 30 cm from the ideal trajectory. The blue
box at (1, 0) is a geo-fenced region that is known a priori, and the gray circle at (0, 1) is a static obstacle that is not known a priori by the robot. (a) Solely
TCs (SCs). (b) ULGEN. (c) Solely UCs (ACs). (d) Environment.

VIII. RELATED WORK

Various approaches have been proposed for the runtime
monitoring and safe execution of safety-critical systems.
Runtime verification techniques were used to monitor the
safety of robotic systems in [6], [11], [19], [20], [26],
[27], and [31]. Schierman et el. [36] examined the appli-
cation of an RTA framework to the software stack of an
unmanned aircraft system. Phan et al. [32] introduced a
component-based Simplex architecture with assume-guarantee
contracts for component-based CPS. The Simplex architec-
ture has also been applied to sandboxing CPS [4], where
automatic reachability-based approaches were presented for
the controller regions. Akametalu et al. [1] proposed a
reachability-based controller switching mechanism for rein-
forcement learning. ModelPlex [30] combines offline manual
theorem proving-based verification with runtime validation of
system executions [30]. Building on ModelPlex, Fulton and
Platzer [17] developed an approach for provably safe learn-
ing of control strategies based on the differences between the
reality and the offline verification model. The Neural Simplex
architecture [33] is an RTA framework for neural controllers,
which enables retraining of the AC after a switch to the SC.
Desai et al. [7] introduced SOTER, a framework for program-
ming safe robotic systems with RTA modules and bidirectional
switching between SC and AC.

This article is complementary to much of this literature—we
provide a general programming framework for RTA, wherein,
for example, switching logic devised using an approach like
ModelPlex could be implemented in ULGEN, and any state-
of-the-art runtime monitoring tool could be used with our
approach. The closest related work is SOTER [7], which only
defines time-driven RTA modules with two controllers, and
does not provide a publicly available tool. ULGEN defines
event-driven and time-driven RTA modules with multiple con-
trollers, provides priority-based communication, guarantees
safety under formal well-formedness properties, enables the
integration of state-of-the-art monitoring tools, and offers a
ready-to-use toolkit. All in all, ULGEN provides a general
RTA framework that can accommodate various state-of-the-
art approaches and tools for programming safe CPS, and
to the best of our knowledge, it is the first to offer such
flexibility.

IX. CONCLUSION

We presented ULGEN, a framework for programming safe
CPS. ULGEN defines event-driven and time-driven RTA mod-
ules with multiple controllers as building blocks for asyn-
chronous processes along with a priority-based communication
mechanism for task prioritization. We defined formal well-
formedness properties guaranteeing a composition of SCs and
ACs in a way that assures the underlying safety specifications
provided by the SCs while delivering the desired performance
offered by the ACs. We demonstrated the efficacy of ULGEN

with five case studies both in a simulation setup and on a
robotic platform. In the case studies, our evaluations show that
ULGEN delivers the desired performance while assuring safety.

REFERENCES

[1] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama,
M. N. Zeilinger, and C. J. Tomlin, “Reachability-based safe learning
with Gaussian processes,” in Proc. 53rd IEEE Conf. Decis. Control,
2014, pp. 1424–1431.

[2] R. Alur, “Timed automata,” in Proc. Int. Conf. Comput. Aided
Verification, 1999, pp. 8–22.

[3] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994.

[4] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing con-
trollers for cyber-physical systems,” in Proc. IEEE/ACM 2nd Int. Conf.
Cyber-Phys. Syst., 2011, pp. 3–12.

[5] B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer, “Veriphy:
Verified controller executables from verified cyber-physical system mod-
els,” in Proc. 39th ACM SIGPLAN Conf. Programming Lang. Design
Implement., 2018, pp. 617–630.

[6] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking
and runtime verification for safe robotics,” in Proc. Int. Conf. Runtime
Verification, 2017, pp. 172–189.

[7] A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, and A. Tiwari, “SOTER:
A runtime assurance framework for programming safe robotics systems,”
in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
2019, pp. 138–150.

[8] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey,
“P: Safe asynchronous event-driven programming,” ACM SIGPLAN
Notices, vol. 48, no. 6, pp. 321–332, 2013.

[9] A. Desai, A. Phanishayee, S. Qadeer, and S. A. Seshia, “Compositional
programming and testing of dynamic distributed systems,” in Proc. ACM
Program. Lang., 2018, pp. 1–30.

[10] A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia, “Drona: A
framework for safe distributed mobile robotics,” in Proc. 8th Int. Conf.
Cyber-Phys. Syst., 2017, pp. 239–248.

[11] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and
S. A. Seshia, “Robust online monitoring of signal temporal logic,”
Formal Methods Syst. Design, vol. 51, no. 1, pp. 5–30, 2017.

3692 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

[12] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” J. Autom.
Reason., vol. 63, no. 4, pp. 1031–1053, 2019.

[13] T. Dreossi et al., “VerifAI: A toolkit for the formal design and analysis of
artificial intelligence-based systems,” in Proc. Int. Conf. Comput.-Aided
Verification, 2019, pp. 432–442.

[14] A. Ferrando, R. C. Cardoso, M. Fisher, D. Ancona, L. Franceschini,
and V. Mascardi, “ROSMonitoring: A runtime verification framework
for ROS,” in Proc. Annu. Conf. Towards Auton. Robot. Syst., 2020,
pp. 387–399.

[15] G. Frehse et al., “SpaceEx: Scalable verification of hybrid systems,” in
Proc. Int. Conf. Comput. Aided Verification, 2011, pp. 379–395.

[16] D. J. Fremont, J. Chiu, D. D. Margineantu, D. Osipychev, and
S. A. Seshia, “Formal analysis and redesign of a neural network-based
aircraft taxiing system with VERIFAI,” in Proc. Int. Conf. Comput.
Aided Verification, 2020, pp. 122–134.

[17] N. Fulton and A. Platzer, “Safe reinforcement learning via formal meth-
ods: Toward safe control through proof and learning,” in Proc. AAAI
Conf. Artif. Intell., vol. 32, 2018, pp. 6485–6492.

[18] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“FaSTrack: A modular framework for fast and guaranteed safe motion
planning,” in Proc. IEEE 56th Annu. Conf. Decis. Control (CDC), 2017,
pp. 1517–1522.

[19] A. G. Hofmann and B. C. Williams, “Robust execution of tempo-
rally flexible plans for bipedal walking devices,” in Proc. ICAPS, 2006,
pp. 386–389.

[20] J. Huang et al., “ROSRV: Runtime verification for robots,” in Proc. Int.
Conf. Runtime Verification, 2014, pp. 247–254.

[21] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, “Java-
MaC: A run-time assurance approach for Java programs,” Formal
Methods Syst. Design, vol. 24, no. 2, pp. 129–155, 2004.

[22] S. Kong, S. Gao, W. Chen, and E. Clarke, “dReach: δ-reachability anal-
ysis for hybrid systems,” in Proc. Int. Conf. Tools Algorithms Construct.
Anal. Syst., 2015, pp. 200–205.

[23] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.

[24] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Trans. Robot., vol.
25, no. 6, pp. 1370–1381, Dec. 2009.

[25] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. Cambridge, MA, USA: MIT Press, 2017.

[26] H. X. Li and B. C. Williams, “Generative planning for hybrid systems
based on flow tubes,” in Proc. ICAPS, 2008, pp. 206–213.

[27] L. Masson, J. Guiochet, H. Waeselynck, K. Cabrera, S. Cassel, and
M. Törngren, “Tuning permissiveness of active safety monitors for
autonomous systems,” in Proc. NASA Formal Methods Symp., 2018,
pp. 333–348.

[28] O. Michel, “Webots: Professional mobile robot simulation,” J. Adv.
Robot. Syst., vol. 1, no. 1, pp. 39–42, 2004.

[29] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957,
Jul. 2005.

[30] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation of
verified cyber-physical system models,” Formal Methods Syst. Design,
vol. 49, no. 1, pp. 33–74, 2016.

[31] O. Pettersson, “Execution monitoring in robotics: A survey,” Robot.
Auton. Syst., vol. 53, no. 2, pp. 73–88, 2005.

[32] D. Phan, J. Yang, M. Clark, R. Grosu, J. Schierman, S. Smolka, and
S. Stoller, “A component-based simplex architecture for high-assurance
cyber-physical systems,” in Proc. 17th Int. Conf. Appl. Concurrency Syst.
Design (ACSD), 2017, pp. 49–58.

[33] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and
S. D. Stoller, “Neural simplex architecture,” in Proc. NASA Formal
Methods Symp., 2020, pp. 97–114.

[34] M. Quigley et al., “ROS: An open-source robot operating system,” in
Proc. ICRA Workshop Open Source Softw., vol. 3, 2009, p. 5.

[35] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia,
“Reactive synthesis from signal temporal logic specifications,” in Proc.
18th Int. Conf. Hybrid Syst. Comput. Control, 2015, pp. 239–248.

[36] J. D. Schierman et al., “Runtime assurance framework development for
highly adaptive flight control systems,” Barron Assoc., Charlottesville,
VA, USA, Rep. AD1010277, 2015.

[37] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards verified artificial
intelligence,” 2016, arXiv:1606.08514.

[38] L. Sha, “Using simplicity to control complexity,” IEEE Softw., vol. 18,
no. 4, pp. 20–28, Jul./Aug. 2001.

[39] S. Shivakumar, H. Torfah, A. Desai, and S. A. Seshia, “SOTER on
ROS: A run-time assurance framework on the robot operating system,”
in Proc. Int. Conf. Runtime Verification, 2020, pp. 184–194.

[40] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

[41] D. Ulus, “Online monitoring of metric temporal logic using sequential
networks,” 2019, arXiv:1901.00175.

[42] “Open-source mobile robot simulation software.” Webots. 2022.
[Online]. Available: http://www.cyberbotics.com

Beyazit Yalcinkaya received the B.Sc. degree in
computer engineering from Middle East Technical
University, Ankara, Turkey, in 2020. He is cur-
rently pursuing the Ph.D. degree with the EECS
Department, UC Berkeley, Berkeley, CA, USA.

His research interests include formal methods,
robotics, and autonomous cyber–physical systems.

Hazem Torfah received the Doctoral degree in com-
puter science from Saarland University, Saarbrücken,
Germany, in 2019.

He is a Postdoctoral Researcher with the EECS
Department, UC Berkeley, Berkeley, CA, USA. His
research interests are the formal specification, verifi-
cation, and synthesis of autonomous cyber–physical
systems.

Ankush Desai received the Ph.D. degree in com-
puter science from UC Berkeley, Berkeley, CA,
USA, in 2019.

He is a Senior Applied Scientist with Amazon
Web Services, Cupertino, CA, USA. He is working
on building formal tools and techniques that help
developers reason about the correctness of complex
distributed services across AWS.

Sanjit A. Seshia (Fellow, IEEE) received the Ph.D.
degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2005.

He is the Cadence Founders Chair Professor with
the EECS Department, UC Berkeley, Berkeley, CA,
USA. His research interests are in formal methods
for dependable and secure computing, with a current
focus on the areas of cyber–physical systems, com-
puter security, machine learning, and robotics.

Dr. Seshia has several awards and honors, includ-
ing the Donald O. Pederson Best Paper Award for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

